GIMP-ML/gimp-plugins/faceparse.py
Kritik Soman 7b2e9112b3 bug fixes
2020-11-28 17:31:37 +05:30

177 lines
5.4 KiB
Python
Executable File

import os
baseLoc = os.path.dirname(os.path.realpath(__file__)) + '/'
from gimpfu import *
import sys
sys.path.extend([baseLoc + 'gimpenv/lib/python2.7', baseLoc + 'gimpenv/lib/python2.7/site-packages',
baseLoc + 'gimpenv/lib/python2.7/site-packages/setuptools', baseLoc + 'face-parsing-PyTorch'])
from model import BiSeNet
from PIL import Image
import torch
from torchvision import transforms, datasets
import numpy as np
import cv2
colors = np.array([[0, 0, 0],
[204, 0, 0],
[0, 255, 255],
[51, 255, 255],
[51, 51, 255],
[204, 0, 204],
[204, 204, 0],
[102, 51, 0],
[255, 0, 0],
[0, 204, 204],
[76, 153, 0],
[102, 204, 0],
[255, 255, 0],
[0, 0, 153],
[255, 153, 51],
[0, 51, 0],
[0, 204, 0],
[0, 0, 204],
[255, 51, 153]])
colors = colors.astype(np.uint8)
def getlabelmat(mask, idx):
x = np.zeros((mask.shape[0], mask.shape[1], 3))
x[mask == idx, 0] = colors[idx][0]
x[mask == idx, 1] = colors[idx][1]
x[mask == idx, 2] = colors[idx][2]
return x
def colorMask(mask):
x = np.zeros((mask.shape[0], mask.shape[1], 3))
for idx in range(19):
x = x + getlabelmat(mask, idx)
return np.uint8(x)
def getface(input_image, cFlag):
save_pth = baseLoc + 'weights/faceparse/79999_iter.pth'
input_image = Image.fromarray(input_image)
n_classes = 19
net = BiSeNet(n_classes=n_classes)
if torch.cuda.is_available() and not cFlag:
net.cuda()
net.load_state_dict(torch.load(save_pth))
else:
net.load_state_dict(torch.load(save_pth, map_location=lambda storage, loc: storage))
net.eval()
to_tensor = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])
with torch.no_grad():
img = input_image.resize((512, 512), Image.BILINEAR)
img = to_tensor(img)
img = torch.unsqueeze(img, 0)
if torch.cuda.is_available() and not cFlag:
img = img.cuda()
out = net(img)[0]
if torch.cuda.is_available():
parsing = out.squeeze(0).cpu().numpy().argmax(0)
else:
parsing = out.squeeze(0).numpy().argmax(0)
parsing = Image.fromarray(np.uint8(parsing))
parsing = parsing.resize(input_image.size)
parsing = np.array(parsing)
return parsing
def getSeg(input_image):
model = torch.load(baseLoc + 'deeplabv3+model.pt')
model.eval()
preprocess = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
input_image = Image.fromarray(input_image)
input_tensor = preprocess(input_image)
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model
# move the input and model to GPU for speed if available
if torch.cuda.is_available():
input_batch = input_batch.to('cuda')
model.to('cuda')
with torch.no_grad():
output = model(input_batch)['out'][0]
output_predictions = output.argmax(0)
# create a color pallette, selecting a color for each class
palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])
colors = torch.as_tensor([i for i in range(21)])[:, None] * palette
colors = (colors % 255).numpy().astype("uint8")
r = Image.fromarray(output_predictions.byte().cpu().numpy()).resize(input_image.size)
tmp = np.array(r)
tmp2 = 10 * np.repeat(tmp[:, :, np.newaxis], 3, axis=2)
return tmp2
def channelData(layer): # convert gimp image to numpy
region = layer.get_pixel_rgn(0, 0, layer.width, layer.height)
pixChars = region[:, :] # Take whole layer
bpp = region.bpp
return np.frombuffer(pixChars, dtype=np.uint8).reshape(layer.height, layer.width, bpp)
def createResultLayer(image, name, result):
rlBytes = np.uint8(result).tobytes()
rl = gimp.Layer(image, name, image.width, image.height, 0, 100, NORMAL_MODE)
region = rl.get_pixel_rgn(0, 0, rl.width, rl.height, True)
region[:, :] = rlBytes
image.add_layer(rl, 0)
gimp.displays_flush()
def faceparse(img, layer, cFlag):
imgmat = channelData(layer)
if imgmat.shape[2] == 4: # get rid of alpha channel
imgmat = imgmat[:, :, 0:3]
if imgmat.shape[0] != img.height or imgmat.shape[1] != img.width:
pdb.gimp_message(" Do (Layer -> Layer to Image Size) first and try again.")
else:
if torch.cuda.is_available() and not cFlag:
gimp.progress_init("(Using GPU) Running face parse for " + layer.name + "...")
else:
gimp.progress_init("(Using CPU) Running face parse for " + layer.name + "...")
cpy = getface(imgmat, cFlag)
cpy = colorMask(cpy)
createResultLayer(img, 'new_output', cpy)
register(
"faceparse",
"faceparse",
"Running face parse.",
"Kritik Soman",
"Your",
"2020",
"faceparse...",
"*", # Alternately use RGB, RGB*, GRAY*, INDEXED etc.
[(PF_IMAGE, "image", "Input image", None),
(PF_DRAWABLE, "drawable", "Input drawable", None),
(PF_BOOL, "fcpu", "Force CPU", False)
],
[],
faceparse, menu="<Image>/Layer/GIML-ML")
main()