mirror of
https://github.com/kritiksoman/GIMP-ML
synced 2024-10-31 09:20:18 +00:00
263 lines
10 KiB
Python
263 lines
10 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import numpy as np
|
|
from torch.optim import AdamW
|
|
import torch.optim as optim
|
|
import itertools
|
|
from model.warplayer import warp
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
from model.IFNet import *
|
|
import torch.nn.functional as F
|
|
from model.loss import *
|
|
|
|
|
|
def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
|
|
return nn.Sequential(
|
|
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
|
|
padding=padding, dilation=dilation, bias=True),
|
|
nn.PReLU(out_planes)
|
|
)
|
|
|
|
|
|
def deconv(in_planes, out_planes, kernel_size=4, stride=2, padding=1):
|
|
return nn.Sequential(
|
|
torch.nn.ConvTranspose2d(in_channels=in_planes, out_channels=out_planes,
|
|
kernel_size=4, stride=2, padding=1, bias=True),
|
|
nn.PReLU(out_planes)
|
|
)
|
|
|
|
|
|
def conv_woact(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
|
|
return nn.Sequential(
|
|
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
|
|
padding=padding, dilation=dilation, bias=True),
|
|
)
|
|
|
|
|
|
class ResBlock(nn.Module):
|
|
def __init__(self, in_planes, out_planes, stride=2):
|
|
super(ResBlock, self).__init__()
|
|
if in_planes == out_planes and stride == 1:
|
|
self.conv0 = nn.Identity()
|
|
else:
|
|
self.conv0 = nn.Conv2d(in_planes, out_planes,
|
|
3, stride, 1, bias=False)
|
|
self.conv1 = conv(in_planes, out_planes, 3, stride, 1)
|
|
self.conv2 = conv_woact(out_planes, out_planes, 3, 1, 1)
|
|
self.relu1 = nn.PReLU(1)
|
|
self.relu2 = nn.PReLU(out_planes)
|
|
self.fc1 = nn.Conv2d(out_planes, 16, kernel_size=1, bias=False)
|
|
self.fc2 = nn.Conv2d(16, out_planes, kernel_size=1, bias=False)
|
|
|
|
def forward(self, x):
|
|
y = self.conv0(x)
|
|
x = self.conv1(x)
|
|
x = self.conv2(x)
|
|
w = x.mean(3, True).mean(2, True)
|
|
w = self.relu1(self.fc1(w))
|
|
w = torch.sigmoid(self.fc2(w))
|
|
x = self.relu2(x * w + y)
|
|
return x
|
|
|
|
|
|
c = 16
|
|
|
|
|
|
class ContextNet(nn.Module):
|
|
def __init__(self, cFlag):
|
|
super(ContextNet, self).__init__()
|
|
self.conv1 = ResBlock(3, c)
|
|
self.conv2 = ResBlock(c, 2 * c)
|
|
self.conv3 = ResBlock(2 * c, 4 * c)
|
|
self.conv4 = ResBlock(4 * c, 8 * c)
|
|
self.cFlag = cFlag
|
|
|
|
def forward(self, x, flow):
|
|
x = self.conv1(x)
|
|
f1 = warp(x, flow, self.cFlag)
|
|
x = self.conv2(x)
|
|
flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear",
|
|
align_corners=False) * 0.5
|
|
f2 = warp(x, flow, self.cFlag)
|
|
x = self.conv3(x)
|
|
flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear",
|
|
align_corners=False) * 0.5
|
|
f3 = warp(x, flow, self.cFlag)
|
|
x = self.conv4(x)
|
|
flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear",
|
|
align_corners=False) * 0.5
|
|
f4 = warp(x, flow, self.cFlag)
|
|
return [f1, f2, f3, f4]
|
|
|
|
|
|
class FusionNet(nn.Module):
|
|
def __init__(self, cFlag):
|
|
super(FusionNet, self).__init__()
|
|
self.down0 = ResBlock(8, 2 * c)
|
|
self.down1 = ResBlock(4 * c, 4 * c)
|
|
self.down2 = ResBlock(8 * c, 8 * c)
|
|
self.down3 = ResBlock(16 * c, 16 * c)
|
|
self.up0 = deconv(32 * c, 8 * c)
|
|
self.up1 = deconv(16 * c, 4 * c)
|
|
self.up2 = deconv(8 * c, 2 * c)
|
|
self.up3 = deconv(4 * c, c)
|
|
self.conv = nn.Conv2d(c, 4, 3, 1, 1)
|
|
self.cFlag = cFlag
|
|
|
|
def forward(self, img0, img1, flow, c0, c1, flow_gt):
|
|
warped_img0 = warp(img0, flow, self.cFlag)
|
|
warped_img1 = warp(img1, -flow, self.cFlag)
|
|
if flow_gt == None:
|
|
warped_img0_gt, warped_img1_gt = None, None
|
|
else:
|
|
warped_img0_gt = warp(img0, flow_gt[:, :2])
|
|
warped_img1_gt = warp(img1, flow_gt[:, 2:4])
|
|
s0 = self.down0(torch.cat((warped_img0, warped_img1, flow), 1))
|
|
s1 = self.down1(torch.cat((s0, c0[0], c1[0]), 1))
|
|
s2 = self.down2(torch.cat((s1, c0[1], c1[1]), 1))
|
|
s3 = self.down3(torch.cat((s2, c0[2], c1[2]), 1))
|
|
x = self.up0(torch.cat((s3, c0[3], c1[3]), 1))
|
|
x = self.up1(torch.cat((x, s2), 1))
|
|
x = self.up2(torch.cat((x, s1), 1))
|
|
x = self.up3(torch.cat((x, s0), 1))
|
|
x = self.conv(x)
|
|
return x, warped_img0, warped_img1, warped_img0_gt, warped_img1_gt
|
|
|
|
|
|
class Model:
|
|
def __init__(self, c_flag, local_rank=-1):
|
|
self.flownet = IFNet(c_flag)
|
|
self.contextnet = ContextNet(c_flag)
|
|
self.fusionnet = FusionNet(c_flag)
|
|
self.device(c_flag)
|
|
self.optimG = AdamW(itertools.chain(
|
|
self.flownet.parameters(),
|
|
self.contextnet.parameters(),
|
|
self.fusionnet.parameters()), lr=1e-6, weight_decay=1e-5)
|
|
self.schedulerG = optim.lr_scheduler.CyclicLR(
|
|
self.optimG, base_lr=1e-6, max_lr=1e-3, step_size_up=8000, cycle_momentum=False)
|
|
self.epe = EPE()
|
|
self.ter = Ternary(c_flag)
|
|
self.sobel = SOBEL(c_flag)
|
|
if local_rank != -1:
|
|
self.flownet = DDP(self.flownet, device_ids=[
|
|
local_rank], output_device=local_rank)
|
|
self.contextnet = DDP(self.contextnet, device_ids=[
|
|
local_rank], output_device=local_rank)
|
|
self.fusionnet = DDP(self.fusionnet, device_ids=[
|
|
local_rank], output_device=local_rank)
|
|
|
|
def train(self):
|
|
self.flownet.train()
|
|
self.contextnet.train()
|
|
self.fusionnet.train()
|
|
|
|
def eval(self):
|
|
self.flownet.eval()
|
|
self.contextnet.eval()
|
|
self.fusionnet.eval()
|
|
|
|
def device(self, c_flag):
|
|
if torch.cuda.is_available() and not c_flag:
|
|
device = torch.device("cuda")
|
|
else:
|
|
device = torch.device("cpu")
|
|
self.flownet.to(device)
|
|
self.contextnet.to(device)
|
|
self.fusionnet.to(device)
|
|
|
|
def load_model(self, path, rank=0):
|
|
def convert(param):
|
|
return {
|
|
k.replace("module.", ""): v
|
|
for k, v in param.items()
|
|
if "module." in k
|
|
}
|
|
|
|
if rank == 0:
|
|
self.flownet.load_state_dict(
|
|
convert(torch.load('{}/flownet.pkl'.format(path), map_location=torch.device("cpu"))))
|
|
self.contextnet.load_state_dict(
|
|
convert(torch.load('{}/contextnet.pkl'.format(path), map_location=torch.device("cpu"))))
|
|
self.fusionnet.load_state_dict(
|
|
convert(torch.load('{}/unet.pkl'.format(path), map_location=torch.device("cpu"))))
|
|
|
|
def save_model(self, path, rank=0):
|
|
if rank == 0:
|
|
torch.save(self.flownet.state_dict(),
|
|
'{}/flownet.pkl'.format(path))
|
|
torch.save(self.contextnet.state_dict(),
|
|
'{}/contextnet.pkl'.format(path))
|
|
torch.save(self.fusionnet.state_dict(), '{}/unet.pkl'.format(path))
|
|
|
|
def predict(self, imgs, flow, training=True, flow_gt=None):
|
|
img0 = imgs[:, :3]
|
|
img1 = imgs[:, 3:]
|
|
c0 = self.contextnet(img0, flow)
|
|
c1 = self.contextnet(img1, -flow)
|
|
flow = F.interpolate(flow, scale_factor=2.0, mode="bilinear",
|
|
align_corners=False) * 2.0
|
|
refine_output, warped_img0, warped_img1, warped_img0_gt, warped_img1_gt = self.fusionnet(
|
|
img0, img1, flow, c0, c1, flow_gt)
|
|
res = torch.sigmoid(refine_output[:, :3]) * 2 - 1
|
|
mask = torch.sigmoid(refine_output[:, 3:4])
|
|
merged_img = warped_img0 * mask + warped_img1 * (1 - mask)
|
|
pred = merged_img + res
|
|
pred = torch.clamp(pred, 0, 1)
|
|
if training:
|
|
return pred, mask, merged_img, warped_img0, warped_img1, warped_img0_gt, warped_img1_gt
|
|
else:
|
|
return pred
|
|
|
|
def inference(self, img0, img1):
|
|
imgs = torch.cat((img0, img1), 1)
|
|
flow, _ = self.flownet(imgs)
|
|
return self.predict(imgs, flow, training=False).detach()
|
|
|
|
def update(self, imgs, gt, learning_rate=0, mul=1, training=True, flow_gt=None):
|
|
for param_group in self.optimG.param_groups:
|
|
param_group['lr'] = learning_rate
|
|
if training:
|
|
self.train()
|
|
else:
|
|
self.eval()
|
|
flow, flow_list = self.flownet(imgs)
|
|
pred, mask, merged_img, warped_img0, warped_img1, warped_img0_gt, warped_img1_gt = self.predict(
|
|
imgs, flow, flow_gt=flow_gt)
|
|
loss_ter = self.ter(pred, gt).mean()
|
|
if training:
|
|
with torch.no_grad():
|
|
loss_flow = torch.abs(warped_img0_gt - gt).mean()
|
|
loss_mask = torch.abs(
|
|
merged_img - gt).sum(1, True).float().detach()
|
|
loss_mask = F.interpolate(loss_mask, scale_factor=0.5, mode="bilinear",
|
|
align_corners=False).detach()
|
|
flow_gt = (F.interpolate(flow_gt, scale_factor=0.5, mode="bilinear",
|
|
align_corners=False) * 0.5).detach()
|
|
loss_cons = 0
|
|
for i in range(3):
|
|
loss_cons += self.epe(flow_list[i], flow_gt[:, :2], 1)
|
|
loss_cons += self.epe(-flow_list[i], flow_gt[:, 2:4], 1)
|
|
loss_cons = loss_cons.mean() * 0.01
|
|
else:
|
|
loss_cons = torch.tensor([0])
|
|
loss_flow = torch.abs(warped_img0 - gt).mean()
|
|
loss_mask = 1
|
|
loss_l1 = (((pred - gt) ** 2 + 1e-6) ** 0.5).mean()
|
|
if training:
|
|
self.optimG.zero_grad()
|
|
loss_G = loss_l1 + loss_cons + loss_ter
|
|
loss_G.backward()
|
|
self.optimG.step()
|
|
return pred, merged_img, flow, loss_l1, loss_flow, loss_cons, loss_ter, loss_mask
|
|
|
|
|
|
if __name__ == '__main__':
|
|
img0 = torch.zeros(3, 3, 256, 256).float().to(device)
|
|
img1 = torch.tensor(np.random.normal(
|
|
0, 1, (3, 3, 256, 256))).float().to(device)
|
|
imgs = torch.cat((img0, img1), 1)
|
|
model = Model()
|
|
model.eval()
|
|
print(model.inference(imgs).shape)
|