mirror of
https://github.com/kritiksoman/GIMP-ML
synced 2024-10-31 09:20:18 +00:00
118 lines
4.0 KiB
Python
118 lines
4.0 KiB
Python
import torch
|
|
import numpy as np
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from model.warplayer import warp
|
|
|
|
|
|
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
def conv_wo_act(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
|
|
return nn.Sequential(
|
|
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
|
|
padding=padding, dilation=dilation, bias=False),
|
|
nn.BatchNorm2d(out_planes),
|
|
)
|
|
|
|
|
|
def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
|
|
return nn.Sequential(
|
|
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
|
|
padding=padding, dilation=dilation, bias=False),
|
|
nn.BatchNorm2d(out_planes),
|
|
nn.PReLU(out_planes)
|
|
)
|
|
|
|
|
|
class ResBlock(nn.Module):
|
|
def __init__(self, in_planes, out_planes, stride=1):
|
|
super(ResBlock, self).__init__()
|
|
if in_planes == out_planes and stride == 1:
|
|
self.conv0 = nn.Identity()
|
|
else:
|
|
self.conv0 = nn.Conv2d(in_planes, out_planes,
|
|
3, stride, 1, bias=False)
|
|
self.conv1 = conv(in_planes, out_planes, 3, stride, 1)
|
|
self.conv2 = conv_wo_act(out_planes, out_planes, 3, 1, 1)
|
|
self.relu1 = nn.PReLU(1)
|
|
self.relu2 = nn.PReLU(out_planes)
|
|
self.fc1 = nn.Conv2d(out_planes, 16, kernel_size=1, bias=False)
|
|
self.fc2 = nn.Conv2d(16, out_planes, kernel_size=1, bias=False)
|
|
|
|
def forward(self, x):
|
|
y = self.conv0(x)
|
|
x = self.conv1(x)
|
|
x = self.conv2(x)
|
|
w = x.mean(3, True).mean(2, True)
|
|
w = self.relu1(self.fc1(w))
|
|
w = torch.sigmoid(self.fc2(w))
|
|
x = self.relu2(x * w + y)
|
|
return x
|
|
|
|
|
|
class IFBlock(nn.Module):
|
|
def __init__(self, in_planes, scale=1, c=64):
|
|
super(IFBlock, self).__init__()
|
|
self.scale = scale
|
|
self.conv0 = conv(in_planes, c, 3, 2, 1)
|
|
self.res0 = ResBlock(c, c)
|
|
self.res1 = ResBlock(c, c)
|
|
self.res2 = ResBlock(c, c)
|
|
self.res3 = ResBlock(c, c)
|
|
self.res4 = ResBlock(c, c)
|
|
self.res5 = ResBlock(c, c)
|
|
self.conv1 = nn.Conv2d(c, 8, 3, 1, 1)
|
|
self.up = nn.PixelShuffle(2)
|
|
|
|
def forward(self, x):
|
|
if self.scale != 1:
|
|
x = F.interpolate(x, scale_factor=1. / self.scale, mode="bilinear",
|
|
align_corners=False)
|
|
x = self.conv0(x)
|
|
x = self.res0(x)
|
|
x = self.res1(x)
|
|
x = self.res2(x)
|
|
x = self.res3(x)
|
|
x = self.res4(x)
|
|
x = self.res5(x)
|
|
x = self.conv1(x)
|
|
flow = self.up(x)
|
|
if self.scale != 1:
|
|
flow = F.interpolate(flow, scale_factor=self.scale, mode="bilinear",
|
|
align_corners=False)
|
|
return flow
|
|
|
|
|
|
class IFNet(nn.Module):
|
|
def __init__(self, cFlag):
|
|
super(IFNet, self).__init__()
|
|
self.block0 = IFBlock(6, scale=4, c=192)
|
|
self.block1 = IFBlock(8, scale=2, c=128)
|
|
self.block2 = IFBlock(8, scale=1, c=64)
|
|
self.cFlag = cFlag
|
|
|
|
def forward(self, x):
|
|
x = F.interpolate(x, scale_factor=0.5, mode="bilinear",
|
|
align_corners=False)
|
|
flow0 = self.block0(x)
|
|
F1 = flow0
|
|
warped_img0 = warp(x[:, :3], F1, self.cFlag)
|
|
warped_img1 = warp(x[:, 3:], -F1, self.cFlag)
|
|
flow1 = self.block1(torch.cat((warped_img0, warped_img1, F1), 1))
|
|
F2 = (flow0 + flow1)
|
|
warped_img0 = warp(x[:, :3], F2, self.cFlag)
|
|
warped_img1 = warp(x[:, 3:], -F2, self.cFlag)
|
|
flow2 = self.block2(torch.cat((warped_img0, warped_img1, F2), 1))
|
|
F3 = (flow0 + flow1 + flow2)
|
|
return F3, [F1, F2, F3]
|
|
|
|
|
|
if __name__ == '__main__':
|
|
img0 = torch.zeros(3, 3, 256, 256).float().to(device)
|
|
img1 = torch.tensor(np.random.normal(
|
|
0, 1, (3, 3, 256, 256))).float().to(device)
|
|
imgs = torch.cat((img0, img1), 1)
|
|
flownet = IFNet()
|
|
flow, _ = flownet(imgs)
|
|
print(flow.shape)
|