GIMP-ML/gimp-plugins/DeblurGANv2/predict.py
2020-04-27 10:02:33 +05:30

109 lines
3.3 KiB
Python

import os
from glob import glob
# from typing import Optional
import cv2
import numpy as np
import torch
import yaml
from fire import Fire
from tqdm import tqdm
from aug import get_normalize
from models.networks import get_generator
class Predictor:
def __init__(self, weights_path, model_name=''):
with open('config/config.yaml') as cfg:
config = yaml.load(cfg)
model = get_generator(model_name or config['model'])
model.load_state_dict(torch.load(weights_path, map_location=lambda storage, loc: storage)['model'])
if torch.cuda.is_available():
self.model = model.cuda()
else:
self.model = model
self.model.train(True)
# GAN inference should be in train mode to use actual stats in norm layers,
# it's not a bug
self.normalize_fn = get_normalize()
@staticmethod
def _array_to_batch(x):
x = np.transpose(x, (2, 0, 1))
x = np.expand_dims(x, 0)
return torch.from_numpy(x)
def _preprocess(self, x, mask):
x, _ = self.normalize_fn(x, x)
if mask is None:
mask = np.ones_like(x, dtype=np.float32)
else:
mask = np.round(mask.astype('float32') / 255)
h, w, _ = x.shape
block_size = 32
min_height = (h // block_size + 1) * block_size
min_width = (w // block_size + 1) * block_size
pad_params = {'mode': 'constant',
'constant_values': 0,
'pad_width': ((0, min_height - h), (0, min_width - w), (0, 0))
}
x = np.pad(x, **pad_params)
mask = np.pad(mask, **pad_params)
return map(self._array_to_batch, (x, mask)), h, w
@staticmethod
def _postprocess(x):
x, = x
x = x.detach().cpu().float().numpy()
x = (np.transpose(x, (1, 2, 0)) + 1) / 2.0 * 255.0
return x.astype('uint8')
def __call__(self, img, mask, ignore_mask=True):
(img, mask), h, w = self._preprocess(img, mask)
with torch.no_grad():
if torch.cuda.is_available():
inputs = [img.cuda()]
else:
inputs = [img]
if not ignore_mask:
inputs += [mask]
pred = self.model(*inputs)
return self._postprocess(pred)[:h, :w, :]
def sorted_glob(pattern):
return sorted(glob(pattern))
def main(img_pattern,
mask_pattern = None,
weights_path='best_fpn.h5',
out_dir='submit/',
side_by_side = False):
imgs = sorted_glob(img_pattern)
masks = sorted_glob(mask_pattern) if mask_pattern is not None else [None for _ in imgs]
pairs = zip(imgs, masks)
names = sorted([os.path.basename(x) for x in glob(img_pattern)])
predictor = Predictor(weights_path=weights_path)
# os.makedirs(out_dir)
for name, pair in tqdm(zip(names, pairs), total=len(names)):
f_img, f_mask = pair
img, mask = map(cv2.imread, (f_img, f_mask))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
pred = predictor(img, mask)
if side_by_side:
pred = np.hstack((img, pred))
pred = cv2.cvtColor(pred, cv2.COLOR_RGB2BGR)
cv2.imwrite(os.path.join(out_dir, name),
pred)
if __name__ == '__main__':
Fire(main)