mirror of
https://github.com/kritiksoman/GIMP-ML
synced 2024-11-02 03:40:29 +00:00
66 lines
2.2 KiB
Python
Executable File
66 lines
2.2 KiB
Python
Executable File
# Copyright Niantic 2019. Patent Pending. All rights reserved.
|
|
#
|
|
# This software is licensed under the terms of the Monodepth2 licence
|
|
# which allows for non-commercial use only, the full terms of which are made
|
|
# available in the LICENSE file.
|
|
|
|
from __future__ import absolute_import, division, print_function
|
|
|
|
import os
|
|
|
|
import argparse
|
|
import numpy as np
|
|
import PIL.Image as pil
|
|
|
|
from utils import readlines
|
|
from kitti_utils import generate_depth_map
|
|
|
|
|
|
def export_gt_depths_kitti():
|
|
|
|
parser = argparse.ArgumentParser(description='export_gt_depth')
|
|
|
|
parser.add_argument('--data_path',
|
|
type=str,
|
|
help='path to the root of the KITTI data',
|
|
required=True)
|
|
parser.add_argument('--split',
|
|
type=str,
|
|
help='which split to export gt from',
|
|
required=True,
|
|
choices=["eigen", "eigen_benchmark"])
|
|
opt = parser.parse_args()
|
|
|
|
split_folder = os.path.join(os.path.dirname(__file__), "splits", opt.split)
|
|
lines = readlines(os.path.join(split_folder, "test_files.txt"))
|
|
|
|
print("Exporting ground truth depths for {}".format(opt.split))
|
|
|
|
gt_depths = []
|
|
for line in lines:
|
|
|
|
folder, frame_id, _ = line.split()
|
|
frame_id = int(frame_id)
|
|
|
|
if opt.split == "eigen":
|
|
calib_dir = os.path.join(opt.data_path, folder.split("/")[0])
|
|
velo_filename = os.path.join(opt.data_path, folder,
|
|
"velodyne_points/data", "{:010d}.bin".format(frame_id))
|
|
gt_depth = generate_depth_map(calib_dir, velo_filename, 2, True)
|
|
elif opt.split == "eigen_benchmark":
|
|
gt_depth_path = os.path.join(opt.data_path, folder, "proj_depth",
|
|
"groundtruth", "image_02", "{:010d}.png".format(frame_id))
|
|
gt_depth = np.array(pil.open(gt_depth_path)).astype(np.float32) / 256
|
|
|
|
gt_depths.append(gt_depth.astype(np.float32))
|
|
|
|
output_path = os.path.join(split_folder, "gt_depths.npz")
|
|
|
|
print("Saving to {}".format(opt.split))
|
|
|
|
np.savez_compressed(output_path, data=np.array(gt_depths))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
export_gt_depths_kitti()
|