mirror of
https://github.com/kritiksoman/GIMP-ML
synced 2024-11-06 03:20:34 +00:00
85 lines
3.4 KiB
Python
Executable File
85 lines
3.4 KiB
Python
Executable File
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as functional
|
|
|
|
from models._util import try_index
|
|
from .bn import ABN
|
|
|
|
|
|
class DeeplabV3(nn.Module):
|
|
def __init__(self,
|
|
in_channels,
|
|
out_channels,
|
|
hidden_channels=256,
|
|
dilations=(12, 24, 36),
|
|
norm_act=ABN,
|
|
pooling_size=None):
|
|
super(DeeplabV3, self).__init__()
|
|
self.pooling_size = pooling_size
|
|
|
|
self.map_convs = nn.ModuleList([
|
|
nn.Conv2d(in_channels, hidden_channels, 1, bias=False),
|
|
nn.Conv2d(in_channels, hidden_channels, 3, bias=False, dilation=dilations[0], padding=dilations[0]),
|
|
nn.Conv2d(in_channels, hidden_channels, 3, bias=False, dilation=dilations[1], padding=dilations[1]),
|
|
nn.Conv2d(in_channels, hidden_channels, 3, bias=False, dilation=dilations[2], padding=dilations[2])
|
|
])
|
|
self.map_bn = norm_act(hidden_channels * 4)
|
|
|
|
self.global_pooling_conv = nn.Conv2d(in_channels, hidden_channels, 1, bias=False)
|
|
self.global_pooling_bn = norm_act(hidden_channels)
|
|
|
|
self.red_conv = nn.Conv2d(hidden_channels * 4, out_channels, 1, bias=False)
|
|
self.pool_red_conv = nn.Conv2d(hidden_channels, out_channels, 1, bias=False)
|
|
self.red_bn = norm_act(out_channels)
|
|
|
|
self.reset_parameters(self.map_bn.activation, self.map_bn.slope)
|
|
|
|
def reset_parameters(self, activation, slope):
|
|
gain = nn.init.calculate_gain(activation, slope)
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
nn.init.xavier_normal_(m.weight.data, gain)
|
|
if hasattr(m, "bias") and m.bias is not None:
|
|
nn.init.constant_(m.bias, 0)
|
|
elif isinstance(m, ABN):
|
|
if hasattr(m, "weight") and m.weight is not None:
|
|
nn.init.constant_(m.weight, 1)
|
|
if hasattr(m, "bias") and m.bias is not None:
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
def forward(self, x):
|
|
# Map convolutions
|
|
out = torch.cat([m(x) for m in self.map_convs], dim=1)
|
|
out = self.map_bn(out)
|
|
out = self.red_conv(out)
|
|
|
|
# Global pooling
|
|
pool = self._global_pooling(x)
|
|
pool = self.global_pooling_conv(pool)
|
|
pool = self.global_pooling_bn(pool)
|
|
pool = self.pool_red_conv(pool)
|
|
if self.training or self.pooling_size is None:
|
|
pool = pool.repeat(1, 1, x.size(2), x.size(3))
|
|
|
|
out += pool
|
|
out = self.red_bn(out)
|
|
return out
|
|
|
|
def _global_pooling(self, x):
|
|
if self.training or self.pooling_size is None:
|
|
pool = x.view(x.size(0), x.size(1), -1).mean(dim=-1)
|
|
pool = pool.view(x.size(0), x.size(1), 1, 1)
|
|
else:
|
|
pooling_size = (min(try_index(self.pooling_size, 0), x.shape[2]),
|
|
min(try_index(self.pooling_size, 1), x.shape[3]))
|
|
padding = (
|
|
(pooling_size[1] - 1) // 2,
|
|
(pooling_size[1] - 1) // 2 if pooling_size[1] % 2 == 1 else (pooling_size[1] - 1) // 2 + 1,
|
|
(pooling_size[0] - 1) // 2,
|
|
(pooling_size[0] - 1) // 2 if pooling_size[0] % 2 == 1 else (pooling_size[0] - 1) // 2 + 1
|
|
)
|
|
|
|
pool = functional.avg_pool2d(x, pooling_size, stride=1)
|
|
pool = functional.pad(pool, pad=padding, mode="replicate")
|
|
return pool
|