mirror of
https://github.com/kritiksoman/GIMP-ML
synced 2024-11-06 03:20:34 +00:00
86 lines
2.8 KiB
Python
Executable File
86 lines
2.8 KiB
Python
Executable File
import argparse, os
|
|
import torch
|
|
from torch.autograd import Variable
|
|
import numpy as np
|
|
import time, math
|
|
import scipy.io as sio
|
|
import matplotlib.pyplot as plt
|
|
|
|
parser = argparse.ArgumentParser(description="PyTorch SRResNet Demo")
|
|
parser.add_argument("--cuda", action="store_true", help="use cuda?")
|
|
parser.add_argument("--model", default="model/model_srresnet.pth", type=str, help="model path")
|
|
parser.add_argument("--image", default="butterfly_GT", type=str, help="image name")
|
|
parser.add_argument("--dataset", default="Set5", type=str, help="dataset name")
|
|
parser.add_argument("--scale", default=4, type=int, help="scale factor, Default: 4")
|
|
parser.add_argument("--gpus", default="0", type=str, help="gpu ids (default: 0)")
|
|
|
|
def PSNR(pred, gt, shave_border=0):
|
|
height, width = pred.shape[:2]
|
|
pred = pred[shave_border:height - shave_border, shave_border:width - shave_border]
|
|
gt = gt[shave_border:height - shave_border, shave_border:width - shave_border]
|
|
imdff = pred - gt
|
|
rmse = math.sqrt(np.mean(imdff ** 2))
|
|
if rmse == 0:
|
|
return 100
|
|
return 20 * math.log10(255.0 / rmse)
|
|
|
|
opt = parser.parse_args()
|
|
cuda = opt.cuda
|
|
|
|
if cuda:
|
|
print("=> use gpu id: '{}'".format(opt.gpus))
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpus
|
|
if not torch.cuda.is_available():
|
|
raise Exception("No GPU found or Wrong gpu id, please run without --cuda")
|
|
|
|
model = torch.load(opt.model)["model"]
|
|
|
|
im_gt = sio.loadmat("testsets/" + opt.dataset + "/" + opt.image + ".mat")['im_gt']
|
|
im_b = sio.loadmat("testsets/" + opt.dataset + "/" + opt.image + ".mat")['im_b']
|
|
im_l = sio.loadmat("testsets/" + opt.dataset + "/" + opt.image + ".mat")['im_l']
|
|
|
|
im_gt = im_gt.astype(float).astype(np.uint8)
|
|
im_b = im_b.astype(float).astype(np.uint8)
|
|
im_l = im_l.astype(float).astype(np.uint8)
|
|
|
|
im_input = im_l.astype(np.float32).transpose(2,0,1)
|
|
im_input = im_input.reshape(1,im_input.shape[0],im_input.shape[1],im_input.shape[2])
|
|
im_input = Variable(torch.from_numpy(im_input/255.).float())
|
|
|
|
if cuda:
|
|
model = model.cuda()
|
|
im_input = im_input.cuda()
|
|
else:
|
|
model = model.cpu()
|
|
|
|
start_time = time.time()
|
|
out = model(im_input)
|
|
elapsed_time = time.time() - start_time
|
|
|
|
out = out.cpu()
|
|
|
|
im_h = out.data[0].numpy().astype(np.float32)
|
|
|
|
im_h = im_h*255.
|
|
im_h[im_h<0] = 0
|
|
im_h[im_h>255.] = 255.
|
|
im_h = im_h.transpose(1,2,0)
|
|
|
|
print("Dataset=",opt.dataset)
|
|
print("Scale=",opt.scale)
|
|
print("It takes {}s for processing".format(elapsed_time))
|
|
|
|
fig = plt.figure()
|
|
ax = plt.subplot("131")
|
|
ax.imshow(im_gt)
|
|
ax.set_title("GT")
|
|
|
|
ax = plt.subplot("132")
|
|
ax.imshow(im_b)
|
|
ax.set_title("Input(Bicubic)")
|
|
|
|
ax = plt.subplot("133")
|
|
ax.imshow(im_h.astype(np.uint8))
|
|
ax.set_title("Output(SRResNet)")
|
|
plt.show()
|