mirror of
https://github.com/kritiksoman/GIMP-ML
synced 2024-11-06 03:20:34 +00:00
90 lines
5.5 KiB
Python
Executable File
90 lines
5.5 KiB
Python
Executable File
### Copyright (C) 2017 NVIDIA Corporation. All rights reserved.
|
|
### Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
|
|
import argparse
|
|
import os
|
|
from util import util
|
|
import torch
|
|
|
|
class BaseOptions():
|
|
def __init__(self):
|
|
self.parser = argparse.ArgumentParser()
|
|
self.initialized = False
|
|
|
|
def initialize(self):
|
|
# experiment specifics
|
|
self.parser.add_argument('--name', type=str, default='label2face_512p', help='name of the experiment. It decides where to store samples and models')
|
|
self.parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU')
|
|
self.parser.add_argument('--checkpoints_dir', type=str, default='./checkpoints', help='models are saved here')
|
|
self.parser.add_argument('--model', type=str, default='pix2pixHD', help='which model to use')
|
|
self.parser.add_argument('--norm', type=str, default='instance', help='instance normalization or batch normalization')
|
|
self.parser.add_argument('--use_dropout', action='store_true', help='use dropout for the generator')
|
|
self.parser.add_argument('--data_type', default=32, type=int, choices=[8, 16, 32], help="Supported data type i.e. 8, 16, 32 bit")
|
|
self.parser.add_argument('--verbose', action='store_true', default=False, help='toggles verbose')
|
|
|
|
# input/output sizes
|
|
self.parser.add_argument('--batchSize', type=int, default=1, help='input batch size')
|
|
self.parser.add_argument('--loadSize', type=int, default=512, help='scale images to this size')
|
|
self.parser.add_argument('--fineSize', type=int, default=512, help='then crop to this size')
|
|
self.parser.add_argument('--label_nc', type=int, default=19, help='# of input label channels')
|
|
self.parser.add_argument('--input_nc', type=int, default=3, help='# of input image channels')
|
|
self.parser.add_argument('--output_nc', type=int, default=3, help='# of output image channels')
|
|
|
|
# for setting inputs
|
|
self.parser.add_argument('--dataroot', type=str, default='../Data_preprocessing/')
|
|
self.parser.add_argument('--resize_or_crop', type=str, default='scale_width', help='scaling and cropping of images at load time [resize_and_crop|crop|scale_width|scale_width_and_crop]')
|
|
self.parser.add_argument('--serial_batches', action='store_true', help='if true, takes images in order to make batches, otherwise takes them randomly')
|
|
self.parser.add_argument('--no_flip', action='store_true', help='if specified, do not flip the images for data argumentation')
|
|
self.parser.add_argument('--nThreads', default=2, type=int, help='# threads for loading data')
|
|
self.parser.add_argument('--max_dataset_size', type=int, default=float("inf"), help='Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded.')
|
|
|
|
# for displays
|
|
self.parser.add_argument('--display_winsize', type=int, default=512, help='display window size')
|
|
self.parser.add_argument('--tf_log', action='store_true', help='if specified, use tensorboard logging. Requires tensorflow installed')
|
|
|
|
# for generator
|
|
self.parser.add_argument('--netG', type=str, default='global', help='selects model to use for netG')
|
|
self.parser.add_argument('--ngf', type=int, default=64, help='# of gen filters in first conv layer')
|
|
self.parser.add_argument('--n_downsample_global', type=int, default=4, help='number of downsampling layers in netG')
|
|
self.parser.add_argument('--n_blocks_global', type=int, default=4, help='number of residual blocks in the global generator network')
|
|
self.parser.add_argument('--n_blocks_local', type=int, default=3, help='number of residual blocks in the local enhancer network')
|
|
self.parser.add_argument('--n_local_enhancers', type=int, default=1, help='number of local enhancers to use')
|
|
self.parser.add_argument('--niter_fix_global', type=int, default=0, help='number of epochs that we only train the outmost local enhancer')
|
|
|
|
self.initialized = True
|
|
|
|
def parse(self, save=True):
|
|
if not self.initialized:
|
|
self.initialize()
|
|
self.opt = self.parser.parse_args()
|
|
self.opt.isTrain = self.isTrain # train or test
|
|
|
|
str_ids = self.opt.gpu_ids.split(',')
|
|
self.opt.gpu_ids = []
|
|
for str_id in str_ids:
|
|
id = int(str_id)
|
|
if id >= 0:
|
|
self.opt.gpu_ids.append(id)
|
|
|
|
# set gpu ids
|
|
# if len(self.opt.gpu_ids) > 0:
|
|
# torch.cuda.set_device(self.opt.gpu_ids[0])
|
|
|
|
args = vars(self.opt)
|
|
|
|
print('------------ Options -------------')
|
|
for k, v in sorted(args.items()):
|
|
print('%s: %s' % (str(k), str(v)))
|
|
print('-------------- End ----------------')
|
|
|
|
# save to the disk
|
|
expr_dir = os.path.join(self.opt.checkpoints_dir, self.opt.name)
|
|
util.mkdirs(expr_dir)
|
|
if save and not self.opt.continue_train:
|
|
file_name = os.path.join(expr_dir, 'opt.txt')
|
|
with open(file_name, 'wt') as opt_file:
|
|
opt_file.write('------------ Options -------------\n')
|
|
for k, v in sorted(args.items()):
|
|
opt_file.write('%s: %s\n' % (str(k), str(v)))
|
|
opt_file.write('-------------- End ----------------\n')
|
|
return self.opt
|