You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

187 lines
7.4 KiB
Python

import torch
import torch.nn as nn
import argparse
from torch.autograd import Variable
import torchvision.models as models
import os
from torch.utils import data
from model import generator
import numpy as np
from PIL import Image
from skimage.color import rgb2yuv,yuv2rgb
import cv2
def parse_args():
parser = argparse.ArgumentParser(description="Train a GAN based model")
parser.add_argument("-d",
"--training_dir",
type=str,
required=True,
help="Training directory (folder contains all 256*256 images)")
parser.add_argument("-t",
"--test_image",
type=str,
default=None,
help="Test image location")
parser.add_argument("-c",
"--checkpoint_location",
type=str,
required=True,
help="Place to save checkpoints")
parser.add_argument("-e",
"--epoch",
type=int,
default=120,
help="Epoches to run training")
parser.add_argument("--gpu",
type=int,
default=0,
help="which GPU to use?")
parser.add_argument("-b",
"--batch_size",
type=int,
default=20,
help="batch size")
parser.add_argument("-w",
"--num_workers",
type=int,
default=6,
help="Number of workers to fetch data")
parser.add_argument("-p",
"--pixel_loss_weights",
type=float,
default=1000.0,
help="Pixel-wise loss weights")
parser.add_argument("--g_every",
type=int,
default=1,
help="Training generator every k iteration")
parser.add_argument("--g_lr",
type=float,
default=1e-4,
help="learning rate for generator")
parser.add_argument("--d_lr",
type=float,
default=1e-4,
help="learning rate for discriminator")
parser.add_argument("-i",
"--checkpoint_every",
type=int,
default=100,
help="Save checkpoint every k iteration (checkpoints for same epoch will overwrite)")
parser.add_argument("--d_init",
type=str,
default=None,
help="Init weights for discriminator")
parser.add_argument("--g_init",
type=str,
default=None,
help="Init weights for generator")
args = parser.parse_args()
return args
# define data generator
class img_data(data.Dataset):
def __init__(self, path):
files = os.listdir(path)
self.files = [os.path.join(path,x) for x in files]
def __len__(self):
return len(self.files)
def __getitem__(self, index):
img = Image.open(self.files[index])
yuv = rgb2yuv(img)
y = yuv[...,0]-0.5
u_t = yuv[...,1] / 0.43601035
v_t = yuv[...,2] / 0.61497538
return torch.Tensor(np.expand_dims(y,axis=0)),torch.Tensor(np.stack([u_t,v_t],axis=0))
args = parse_args()
if not os.path.exists(os.path.join(args.checkpoint_location,'weights')):
os.makedirs(os.path.join(args.checkpoint_location,'weights'))
# Define G, same as torch version
G = generator().cuda(args.gpu)
# define D
D = models.resnet18(pretrained=False,num_classes=2)
D.fc = nn.Sequential(nn.Linear(512, 1), nn.Sigmoid())
D = D.cuda(args.gpu)
trainset = img_data(args.training_dir)
params = {'batch_size': args.batch_size,
'shuffle': True,
'num_workers': args.num_workers}
training_generator = data.DataLoader(trainset, **params)
if args.test_image is not None:
test_img = Image.open(args.test_image).convert('RGB').resize((256,256))
test_yuv = rgb2yuv(test_img)
test_inf = test_yuv[...,0].reshape(1,1,256,256)
test_var = Variable(torch.Tensor(test_inf-0.5)).cuda(args.gpu)
if args.d_init is not None:
D.load_state_dict(torch.load(args.d_init))
if args.g_init is not None:
G.load_state_dict(torch.load(args.g_init))
# save test image for beginning
if args.test_image is not None:
test_res = G(test_var)
uv=test_res.cpu().detach().numpy()
uv[:,0,:,:] *= 0.436
uv[:,1,:,:] *= 0.615
test_yuv = np.concatenate([test_inf,uv],axis=1).reshape(3,256,256)
test_rgb = yuv2rgb(test_yuv.transpose(1,2,0))
cv2.imwrite(os.path.join(args.checkpoint_location,'test_init.jpg'),(test_rgb.clip(min=0,max=1)*256)[:,:,[2,1,0]])
i=0
adversarial_loss = torch.nn.BCELoss()
optimizer_G = torch.optim.Adam(G.parameters(), lr=args.g_lr, betas=(0.5, 0.999))
optimizer_D = torch.optim.Adam(D.parameters(), lr=args.d_lr, betas=(0.5, 0.999))
for epoch in range(args.epoch):
for y, uv in training_generator:
# Adversarial ground truths
valid = Variable(torch.Tensor(y.size(0), 1).fill_(1.0), requires_grad=False).cuda(args.gpu)
fake = Variable(torch.Tensor(y.size(0), 1).fill_(0.0), requires_grad=False).cuda(args.gpu)
yvar = Variable(y).cuda(args.gpu)
uvvar = Variable(uv).cuda(args.gpu)
real_imgs = torch.cat([yvar,uvvar],dim=1)
optimizer_G.zero_grad()
uvgen = G(yvar)
# Generate a batch of images
gen_imgs = torch.cat([yvar.detach(),uvgen],dim=1)
# Loss measures generator's ability to fool the discriminator
g_loss_gan = adversarial_loss(D(gen_imgs), valid)
g_loss = g_loss_gan + args.pixel_loss_weights * torch.mean((uvvar-uvgen)**2)
if i%args.g_every==0:
g_loss.backward()
optimizer_G.step()
optimizer_D.zero_grad()
# Measure discriminator's ability to classify real from generated samples
real_loss = adversarial_loss(D(real_imgs), valid)
fake_loss = adversarial_loss(D(gen_imgs.detach()), fake)
d_loss = (real_loss + fake_loss) / 2
d_loss.backward()
optimizer_D.step()
i+=1
if i%args.checkpoint_every==0:
print ("Epoch: %d: [D loss: %f] [G total loss: %f] [G GAN Loss: %f]" % (epoch, d_loss.item(), g_loss.item(), g_loss_gan.item()))
torch.save(D.state_dict(), os.path.join(args.checkpoint_location,'weights','D'+str(epoch)+'.pth'))
torch.save(G.state_dict(), os.path.join(args.checkpoint_location,'weights','G'+str(epoch)+'.pth'))
if args.test_image is not None:
test_res = G(test_var)
uv=test_res.cpu().detach().numpy()
uv[:,0,:,:] *= 0.436
uv[:,1,:,:] *= 0.615
test_yuv = np.concatenate([test_inf,uv],axis=1).reshape(3,256,256)
test_rgb = yuv2rgb(test_yuv.transpose(1,2,0))
cv2.imwrite(os.path.join(args.checkpoint_location,'test_epoch_'+str(epoch)+'.jpg'),(test_rgb.clip(min=0,max=1)*256)[:,:,[2,1,0]])
torch.save(D.state_dict(), os.path.join(args.checkpoint_location,'D_final.pth'))
torch.save(G.state_dict(), os.path.join(args.checkpoint_location,'G_final.pth'))