GIMP-ML/gimp-plugins/monodepth2/layers.py
2020-04-27 10:02:33 +05:30

270 lines
8.0 KiB
Python
Executable File

# Copyright Niantic 2019. Patent Pending. All rights reserved.
#
# This software is licensed under the terms of the Monodepth2 licence
# which allows for non-commercial use only, the full terms of which are made
# available in the LICENSE file.
from __future__ import absolute_import, division, print_function
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
def disp_to_depth(disp, min_depth, max_depth):
"""Convert network's sigmoid output into depth prediction
The formula for this conversion is given in the 'additional considerations'
section of the paper.
"""
min_disp = 1 / max_depth
max_disp = 1 / min_depth
scaled_disp = min_disp + (max_disp - min_disp) * disp
depth = 1 / scaled_disp
return scaled_disp, depth
def transformation_from_parameters(axisangle, translation, invert=False):
"""Convert the network's (axisangle, translation) output into a 4x4 matrix
"""
R = rot_from_axisangle(axisangle)
t = translation.clone()
if invert:
R = R.transpose(1, 2)
t *= -1
T = get_translation_matrix(t)
if invert:
M = torch.matmul(R, T)
else:
M = torch.matmul(T, R)
return M
def get_translation_matrix(translation_vector):
"""Convert a translation vector into a 4x4 transformation matrix
"""
T = torch.zeros(translation_vector.shape[0], 4, 4).to(device=translation_vector.device)
t = translation_vector.contiguous().view(-1, 3, 1)
T[:, 0, 0] = 1
T[:, 1, 1] = 1
T[:, 2, 2] = 1
T[:, 3, 3] = 1
T[:, :3, 3, None] = t
return T
def rot_from_axisangle(vec):
"""Convert an axisangle rotation into a 4x4 transformation matrix
(adapted from https://github.com/Wallacoloo/printipi)
Input 'vec' has to be Bx1x3
"""
angle = torch.norm(vec, 2, 2, True)
axis = vec / (angle + 1e-7)
ca = torch.cos(angle)
sa = torch.sin(angle)
C = 1 - ca
x = axis[..., 0].unsqueeze(1)
y = axis[..., 1].unsqueeze(1)
z = axis[..., 2].unsqueeze(1)
xs = x * sa
ys = y * sa
zs = z * sa
xC = x * C
yC = y * C
zC = z * C
xyC = x * yC
yzC = y * zC
zxC = z * xC
rot = torch.zeros((vec.shape[0], 4, 4)).to(device=vec.device)
rot[:, 0, 0] = torch.squeeze(x * xC + ca)
rot[:, 0, 1] = torch.squeeze(xyC - zs)
rot[:, 0, 2] = torch.squeeze(zxC + ys)
rot[:, 1, 0] = torch.squeeze(xyC + zs)
rot[:, 1, 1] = torch.squeeze(y * yC + ca)
rot[:, 1, 2] = torch.squeeze(yzC - xs)
rot[:, 2, 0] = torch.squeeze(zxC - ys)
rot[:, 2, 1] = torch.squeeze(yzC + xs)
rot[:, 2, 2] = torch.squeeze(z * zC + ca)
rot[:, 3, 3] = 1
return rot
class ConvBlock(nn.Module):
"""Layer to perform a convolution followed by ELU
"""
def __init__(self, in_channels, out_channels):
super(ConvBlock, self).__init__()
self.conv = Conv3x3(in_channels, out_channels)
self.nonlin = nn.ELU(inplace=True)
def forward(self, x):
out = self.conv(x)
out = self.nonlin(out)
return out
class Conv3x3(nn.Module):
"""Layer to pad and convolve input
"""
def __init__(self, in_channels, out_channels, use_refl=True):
super(Conv3x3, self).__init__()
if use_refl:
self.pad = nn.ReflectionPad2d(1)
else:
self.pad = nn.ZeroPad2d(1)
self.conv = nn.Conv2d(int(in_channels), int(out_channels), 3)
def forward(self, x):
out = self.pad(x)
out = self.conv(out)
return out
class BackprojectDepth(nn.Module):
"""Layer to transform a depth image into a point cloud
"""
def __init__(self, batch_size, height, width):
super(BackprojectDepth, self).__init__()
self.batch_size = batch_size
self.height = height
self.width = width
meshgrid = np.meshgrid(range(self.width), range(self.height), indexing='xy')
self.id_coords = np.stack(meshgrid, axis=0).astype(np.float32)
self.id_coords = nn.Parameter(torch.from_numpy(self.id_coords),
requires_grad=False)
self.ones = nn.Parameter(torch.ones(self.batch_size, 1, self.height * self.width),
requires_grad=False)
self.pix_coords = torch.unsqueeze(torch.stack(
[self.id_coords[0].view(-1), self.id_coords[1].view(-1)], 0), 0)
self.pix_coords = self.pix_coords.repeat(batch_size, 1, 1)
self.pix_coords = nn.Parameter(torch.cat([self.pix_coords, self.ones], 1),
requires_grad=False)
def forward(self, depth, inv_K):
cam_points = torch.matmul(inv_K[:, :3, :3], self.pix_coords)
cam_points = depth.view(self.batch_size, 1, -1) * cam_points
cam_points = torch.cat([cam_points, self.ones], 1)
return cam_points
class Project3D(nn.Module):
"""Layer which projects 3D points into a camera with intrinsics K and at position T
"""
def __init__(self, batch_size, height, width, eps=1e-7):
super(Project3D, self).__init__()
self.batch_size = batch_size
self.height = height
self.width = width
self.eps = eps
def forward(self, points, K, T):
P = torch.matmul(K, T)[:, :3, :]
cam_points = torch.matmul(P, points)
pix_coords = cam_points[:, :2, :] / (cam_points[:, 2, :].unsqueeze(1) + self.eps)
pix_coords = pix_coords.view(self.batch_size, 2, self.height, self.width)
pix_coords = pix_coords.permute(0, 2, 3, 1)
pix_coords[..., 0] /= self.width - 1
pix_coords[..., 1] /= self.height - 1
pix_coords = (pix_coords - 0.5) * 2
return pix_coords
def upsample(x):
"""Upsample input tensor by a factor of 2
"""
return F.interpolate(x, scale_factor=2, mode="nearest")
def get_smooth_loss(disp, img):
"""Computes the smoothness loss for a disparity image
The color image is used for edge-aware smoothness
"""
grad_disp_x = torch.abs(disp[:, :, :, :-1] - disp[:, :, :, 1:])
grad_disp_y = torch.abs(disp[:, :, :-1, :] - disp[:, :, 1:, :])
grad_img_x = torch.mean(torch.abs(img[:, :, :, :-1] - img[:, :, :, 1:]), 1, keepdim=True)
grad_img_y = torch.mean(torch.abs(img[:, :, :-1, :] - img[:, :, 1:, :]), 1, keepdim=True)
grad_disp_x *= torch.exp(-grad_img_x)
grad_disp_y *= torch.exp(-grad_img_y)
return grad_disp_x.mean() + grad_disp_y.mean()
class SSIM(nn.Module):
"""Layer to compute the SSIM loss between a pair of images
"""
def __init__(self):
super(SSIM, self).__init__()
self.mu_x_pool = nn.AvgPool2d(3, 1)
self.mu_y_pool = nn.AvgPool2d(3, 1)
self.sig_x_pool = nn.AvgPool2d(3, 1)
self.sig_y_pool = nn.AvgPool2d(3, 1)
self.sig_xy_pool = nn.AvgPool2d(3, 1)
self.refl = nn.ReflectionPad2d(1)
self.C1 = 0.01 ** 2
self.C2 = 0.03 ** 2
def forward(self, x, y):
x = self.refl(x)
y = self.refl(y)
mu_x = self.mu_x_pool(x)
mu_y = self.mu_y_pool(y)
sigma_x = self.sig_x_pool(x ** 2) - mu_x ** 2
sigma_y = self.sig_y_pool(y ** 2) - mu_y ** 2
sigma_xy = self.sig_xy_pool(x * y) - mu_x * mu_y
SSIM_n = (2 * mu_x * mu_y + self.C1) * (2 * sigma_xy + self.C2)
SSIM_d = (mu_x ** 2 + mu_y ** 2 + self.C1) * (sigma_x + sigma_y + self.C2)
return torch.clamp((1 - SSIM_n / SSIM_d) / 2, 0, 1)
def compute_depth_errors(gt, pred):
"""Computation of error metrics between predicted and ground truth depths
"""
thresh = torch.max((gt / pred), (pred / gt))
a1 = (thresh < 1.25 ).float().mean()
a2 = (thresh < 1.25 ** 2).float().mean()
a3 = (thresh < 1.25 ** 3).float().mean()
rmse = (gt - pred) ** 2
rmse = torch.sqrt(rmse.mean())
rmse_log = (torch.log(gt) - torch.log(pred)) ** 2
rmse_log = torch.sqrt(rmse_log.mean())
abs_rel = torch.mean(torch.abs(gt - pred) / gt)
sq_rel = torch.mean((gt - pred) ** 2 / gt)
return abs_rel, sq_rel, rmse, rmse_log, a1, a2, a3