import os baseLoc = os.path.dirname(os.path.realpath(__file__))+'/' from gimpfu import * import sys sys.path.extend([baseLoc+'gimpenv/lib/python2.7',baseLoc+'gimpenv/lib/python2.7/site-packages',baseLoc+'gimpenv/lib/python2.7/site-packages/setuptools',baseLoc+'pytorch-SRResNet']) from argparse import Namespace import torch from torch.autograd import Variable import numpy as np from PIL import Image import cv2 def getlabelmat(mask,idx): x=np.zeros((mask.shape[0],mask.shape[1],3)) x[mask==idx,0]=colors[idx][0] x[mask==idx,1]=colors[idx][1] x[mask==idx,2]=colors[idx][2] return x def colorMask(mask): x=np.zeros((mask.shape[0],mask.shape[1],3)) for idx in range(19): x=x+getlabelmat(mask,idx) return np.uint8(x) def getnewimg(input_image,s): opt=Namespace(cuda=torch.cuda.is_available(), model=baseLoc+'weights/super_resolution/model_srresnet.pth', dataset='Set5',scale=s,gpus=0) im_l=Image.fromarray(input_image) cuda = opt.cuda if cuda: model = torch.load(opt.model)["model"] else: model = torch.load(opt.model,map_location=torch.device('cpu'))["model"] im_l=np.array(im_l) im_l = im_l.astype(float) im_input = im_l.astype(np.float32).transpose(2,0,1) im_input = im_input.reshape(1,im_input.shape[0],im_input.shape[1],im_input.shape[2]) im_input = Variable(torch.from_numpy(im_input/255.).float()) if cuda: model = model.cuda() im_input = im_input.cuda() else: model = model.cpu() HR_4x = model(im_input) HR_4x = HR_4x.cpu() im_h = HR_4x.data[0].numpy().astype(np.float32) im_h = im_h*255. im_h = np.clip(im_h, 0., 255.) im_h = im_h.transpose(1,2,0).astype(np.uint8) return im_h def channelData(layer):#convert gimp image to numpy region=layer.get_pixel_rgn(0, 0, layer.width,layer.height) pixChars=region[:,:] # Take whole layer bpp=region.bpp return np.frombuffer(pixChars,dtype=np.uint8).reshape(layer.height,layer.width,bpp) def createResultLayer(name,layer_np): h,w,d=layer_np.shape img=pdb.gimp_image_new(w, h, RGB) display=pdb.gimp_display_new(img) rlBytes=np.uint8(layer_np).tobytes(); rl=gimp.Layer(img,name,img.width,img.height,RGB,100,NORMAL_MODE) region=rl.get_pixel_rgn(0, 0, rl.width,rl.height,True) region[:,:]=rlBytes pdb.gimp_image_insert_layer(img, rl, None, 0) gimp.displays_flush() def super_resolution(img, layer,scale) : if torch.cuda.is_available(): gimp.progress_init("(Using GPU) Running super-resolution for " + layer.name + "...") else: gimp.progress_init("(Using CPU) Running super-resolution for " + layer.name + "...") imgmat = channelData(layer) if imgmat.shape[2] == 4: # get rid of alpha channel imgmat = imgmat[:,:,0:3] cpy = getnewimg(imgmat,scale) cpy = cv2.resize(cpy, (0,0), fx=scale/4, fy=scale/4) createResultLayer(layer.name+'_upscaled',cpy) register( "super-resolution", "super-resolution", "Running super-resolution.", "Kritik Soman", "Your", "2020", "super-resolution...", "*", # Alternately use RGB, RGB*, GRAY*, INDEXED etc. [ (PF_IMAGE, "image", "Input image", None), (PF_DRAWABLE, "drawable", "Input drawable", None), (PF_SLIDER, "Scale", "Scale", 4, (1.1, 4, 0.5)) ], [], super_resolution, menu="/Layer/GIML-ML") main()