"""Compute depth maps for images in the input folder. """ # import os # import glob import torch # from monodepth_net import MonoDepthNet # import utils # import matplotlib.pyplot as plt import numpy as np import cv2 # import imageio def run_depth(img, model_path, Net, utils, target_w=None): """Run MonoDepthNN to compute depth maps. Args: input_path (str): path to input folder output_path (str): path to output folder model_path (str): path to saved model """ # print("initialize") # select device device = torch.device("cpu") # print("device: %s" % device) # load network model = Net(model_path) model.to(device) model.eval() # get input # img_names = glob.glob(os.path.join(input_path, "*")) # num_images = len(img_names) # create output folder # os.makedirs(output_path, exist_ok=True) # print("start processing") # for ind, img_name in enumerate(img_names): # print(" processing {} ({}/{})".format(img_name, ind + 1, num_images)) # input # img = utils.read_image(img_name) w = img.shape[1] scale = 640. / max(img.shape[0], img.shape[1]) target_height, target_width = int(round(img.shape[0] * scale)), int(round(img.shape[1] * scale)) img_input = utils.resize_image(img) # print(img_input.shape) img_input = img_input.to(device) # compute with torch.no_grad(): out = model.forward(img_input) depth = utils.resize_depth(out, target_width, target_height) img = cv2.resize((img * 255).astype(np.uint8), (target_width, target_height), interpolation=cv2.INTER_AREA) # np.save(filename + '.npy', depth) # utils.write_depth(filename, depth, bits=2) depth_min = depth.min() depth_max = depth.max() bits = 1 max_val = (2 ** (8 * bits)) - 1 if depth_max - depth_min > np.finfo("float").eps: out = max_val * (depth - depth_min) / (depth_max - depth_min) else: out = 0 out = out.astype("uint8") # cv2.imwrite("out.png", out) return out # print("finished")