from gimpfu import * import sys sys.path.extend([baseLoc+'gimpenv/lib/python2.7',baseLoc+'gimpenv/lib/python2.7/site-packages',baseLoc+'gimpenv/lib/python2.7/site-packages/setuptools',baseLoc+'monodepth2']) import PIL.Image as pil import networks import torch from torchvision import transforms, datasets import os import numpy as np import matplotlib as mpl import matplotlib.cm as cm def getMonoDepth(input_image): if torch.cuda.is_available(): device = torch.device("cuda") else: device = torch.device("cpu") loc=baseLoc+'monodepth2/' model_path = os.path.join(loc+"models", 'mono+stereo_640x192') encoder_path = os.path.join(model_path, "encoder.pth") depth_decoder_path = os.path.join(model_path, "depth.pth") # LOADING PRETRAINED MODEL encoder = networks.ResnetEncoder(18, False) loaded_dict_enc = torch.load(encoder_path, map_location=device) # extract the height and width of image that this model was trained with feed_height = loaded_dict_enc['height'] feed_width = loaded_dict_enc['width'] filtered_dict_enc = {k: v for k, v in loaded_dict_enc.items() if k in encoder.state_dict()} encoder.load_state_dict(filtered_dict_enc) encoder.to(device) encoder.eval() depth_decoder = networks.DepthDecoder(num_ch_enc=encoder.num_ch_enc, scales=range(4)) loaded_dict = torch.load(depth_decoder_path, map_location=device) depth_decoder.load_state_dict(loaded_dict) depth_decoder.to(device) depth_decoder.eval() with torch.no_grad(): input_image = pil.fromarray(input_image) # input_image = pil.open(image_path).convert('RGB') original_width, original_height = input_image.size input_image = input_image.resize((feed_width, feed_height), pil.LANCZOS) input_image = transforms.ToTensor()(input_image).unsqueeze(0) # PREDICTION input_image = input_image.to(device) features = encoder(input_image) outputs = depth_decoder(features) disp = outputs[("disp", 0)] disp_resized = torch.nn.functional.interpolate( disp, (original_height, original_width), mode="bilinear", align_corners=False) # Saving colormapped depth image disp_resized_np = disp_resized.squeeze().cpu().numpy() vmax = np.percentile(disp_resized_np, 95) normalizer = mpl.colors.Normalize(vmin=disp_resized_np.min(), vmax=vmax) mapper = cm.ScalarMappable(norm=normalizer, cmap='magma') colormapped_im = (mapper.to_rgba(disp_resized_np)[:, :, :3] * 255).astype(np.uint8) return colormapped_im def channelData(layer):#convert gimp image to numpy region=layer.get_pixel_rgn(0, 0, layer.width,layer.height) pixChars=region[:,:] # Take whole layer bpp=region.bpp # return np.frombuffer(pixChars,dtype=np.uint8).reshape(len(pixChars)/bpp,bpp) return np.frombuffer(pixChars,dtype=np.uint8).reshape(layer.height,layer.width,bpp) def createResultLayer(image,name,result): rlBytes=np.uint8(result).tobytes(); rl=gimp.Layer(image,name,image.width,image.height,image.active_layer.type,100,NORMAL_MODE) region=rl.get_pixel_rgn(0, 0, rl.width,rl.height,True) region[:,:]=rlBytes image.add_layer(rl,0) gimp.displays_flush() def MonoDepth(img, layer) : gimp.progress_init("Generating disparity map for " + layer.name + "...") imgmat = channelData(layer) cpy=getMonoDepth(imgmat) createResultLayer(img,'new_output',cpy) register( "MonoDepth", "MonoDepth", "Generate monocular disparity map based on deep learning.", "Kritik Soman", "Your", "2020", "MonoDepth...", "*", # Alternately use RGB, RGB*, GRAY*, INDEXED etc. [ (PF_IMAGE, "image", "Input image", None), (PF_DRAWABLE, "drawable", "Input drawable", None), ], [], MonoDepth, menu="/Layer/GIML-ML") main()