import os baseLoc = os.path.dirname(os.path.realpath(__file__))+'/' from gimpfu import * import sys sys.path.extend([baseLoc+'gimpenv/lib/python2.7',baseLoc+'gimpenv/lib/python2.7/site-packages',baseLoc+'gimpenv/lib/python2.7/site-packages/setuptools',baseLoc+'CelebAMask-HQ/MaskGAN_demo']) import torch from argparse import Namespace from models.models import create_model from data.base_dataset import get_params, get_transform, normalize import os import numpy as np from PIL import Image colors = np.array([[0, 0, 0], [204, 0, 0], [76, 153, 0], \ [204, 204, 0], [51, 51, 255], [204, 0, 204], [0, 255, 255], \ [51, 255, 255], [102, 51, 0], [255, 0, 0], [102, 204, 0], \ [255, 255, 0], [0, 0, 153], [0, 0, 204], [255, 51, 153], \ [0, 204, 204], [0, 51, 0], [255, 153, 51], [0, 204, 0]]) colors = colors.astype(np.uint8) def getlabelmat(mask,idx): x=np.zeros((mask.shape[0],mask.shape[1],3)) x[mask==idx,0]=colors[idx][0] x[mask==idx,1]=colors[idx][1] x[mask==idx,2]=colors[idx][2] return x def colorMask(mask): x=np.zeros((mask.shape[0],mask.shape[1],3)) for idx in range(19): x=x+getlabelmat(mask,idx) # mask=np.dstack((mask1,mask2,mask3)) return np.uint8(x) def labelMask(mask): x=np.zeros((mask.shape[0],mask.shape[1],3)) for idx in range(19): tmp=np.logical_and(mask[:,:,0]==colors[idx][0],mask[:,:,1]==colors[idx][1]) tmp2=np.logical_and(tmp,mask[:,:,2]==colors[idx][2]) x[tmp2]=idx return x def getOptions(): mydict={'aspect_ratio': 1.0, 'batchSize': 1, 'checkpoints_dir': baseLoc+'CelebAMask-HQ/MaskGAN_demo/checkpoints', 'cluster_path': 'features_clustered_010.npy', 'data_type': 32, 'dataroot': '../Data_preprocessing/', 'display_winsize': 512, 'engine': None, 'export_onnx': None, 'fineSize': 512, 'gpu_ids': [0], 'how_many': 1000, 'input_nc': 3, 'isTrain': False, 'label_nc': 19, 'loadSize': 512, 'max_dataset_size': 'inf', 'model': 'pix2pixHD', 'nThreads': 2, 'n_blocks_global': 4, 'n_blocks_local': 3, 'n_downsample_global': 4, 'n_local_enhancers': 1, 'name': 'label2face_512p', 'netG': 'global', 'ngf': 64, 'niter_fix_global': 0, 'no_flip': False, 'norm': 'instance', 'ntest': 'inf', 'onnx': None, 'output_nc': 3, 'phase': 'test', 'resize_or_crop': 'scale_width', 'results_dir': './results/', 'serial_batches': False, 'tf_log': False, 'use_dropout': False, 'use_encoded_image': False, 'verbose': False, 'which_epoch': 'latest'} args = Namespace(**mydict) return args def channelData(layer):#convert gimp image to numpy region=layer.get_pixel_rgn(0, 0, layer.width,layer.height) pixChars=region[:,:] # Take whole layer bpp=region.bpp # return np.frombuffer(pixChars,dtype=np.uint8).reshape(len(pixChars)/bpp,bpp) return np.frombuffer(pixChars,dtype=np.uint8).reshape(layer.height,layer.width,bpp) def createResultLayer(image,name,result): rlBytes=np.uint8(result).tobytes(); rl=gimp.Layer(image,name,image.width,image.height,image.active_layer.type,100,NORMAL_MODE) region=rl.get_pixel_rgn(0, 0, rl.width,rl.height,True) region[:,:]=rlBytes image.add_layer(rl,0) gimp.displays_flush() def getnewface(img,mask,mask_m): h,w,d = img.shape img = Image.fromarray(img) lmask = labelMask(mask) lmask_m = labelMask(mask_m) os.environ["CUDA_VISIBLE_DEVICES"] = str(0) opt = getOptions() model = create_model(opt) params = get_params(opt, (512,512)) transform_mask = get_transform(opt, params, method=Image.NEAREST, normalize=False, normalize_mask=True) transform_image = get_transform(opt, params) mask = transform_mask(Image.fromarray(np.uint8(lmask))) mask_m = transform_mask(Image.fromarray(np.uint8(lmask_m))) img = transform_image(img) generated = model.inference(torch.FloatTensor([mask_m.numpy()]), torch.FloatTensor([mask.numpy()]), torch.FloatTensor([img.numpy()])) result = generated.permute(0, 2, 3, 1) if torch.cuda.is_available(): result = result.cpu().numpy() else: result = result.detach().numpy() result = (result + 1) * 127.5 result = np.asarray(result[0,:,:,:], dtype=np.uint8) result = Image.fromarray(result) result = result.resize([w,h]) result = np.array(result) return result def facegen(imggimp, curlayer,layeri,layerm,layermm) : if torch.cuda.is_available(): gimp.progress_init("(Using GPU) Running face gen for " + layeri.name + "...") else: gimp.progress_init("(Using CPU) Running face gen for " + layeri.name + "...") img = channelData(layeri) mask = channelData(layerm) mask_m = channelData(layermm) cpy=getnewface(img,mask,mask_m) createResultLayer(imggimp,'new_output',cpy) register( "facegen", "facegen", "Running face gen.", "Kritik Soman", "Your", "2020", "facegen...", "*", # Alternately use RGB, RGB*, GRAY*, INDEXED etc. [ (PF_IMAGE, "image", "Input image", None), (PF_DRAWABLE, "drawable", "Input drawable", None), (PF_LAYER, "drawinglayer", "Original Image:", None), (PF_LAYER, "drawinglayer", "Original Mask:", None), (PF_LAYER, "drawinglayer", "Modified Mask:", None), ], [], facegen, menu="/Layer/GIML-ML") main()