filters and yolo

GIMP3-ML
DESKTOP-F04AGRR\Kritik Soman 3 years ago
parent 40b98d0c53
commit 3893f5f2ac

@ -2,4 +2,5 @@ include gimpml/plugins/colorpalette/color_palette.png
include gimpml/plugins/images/plugin_logo.png
include gimpml/plugins/images/error_icon.png
include gimpml/tools/model_info.csv
include gimpml/tools/pytorch-YOLOv4/yolo_data/coco.names
include gimpml/tools/pytorch-YOLOv4/yolo_data/voc.names

@ -5,7 +5,7 @@ from .tools.dehaze import get_dehaze as dehaze
from .tools.denoise import get_denoise as denoise
from .tools.matting import get_matting as matting
from .tools.enlighten import get_enlighten as enlighten
from .tools.canny import get_edge as edge
# from .facegen import get_newface as newface
from .tools.faceparse import get_face as parseface
from .tools.interpolation import get_inter as interpolateframe
@ -14,5 +14,6 @@ from .tools.complete_install import setup_python_weights
from .tools.semseg import get_seg as semseg
from .tools.superresolution import get_super as super
from .tools.inpainting import get_inpaint as inpaint
from .tools.detectobjects import get_detect_objects as detect_objects
from .filters import *
# from .plugins.plugin_utils import show_error_dialog

@ -0,0 +1,64 @@
import os
import pickle
from gimpml.tools.tools_utils import get_weight_path
import subprocess
import numpy as np
import cv2
# procedure="fog"
# image_path = r"D:\PycharmProjects\test_aug\dp.png"
# save_path = r"D:\PycharmProjects\test_aug\dp2.png"
# opacity = 100
# turbulence = 1 # between o and 1
# rgb = (244, 0, 0)
# image = cv2.imread(image_path)[:, :, ::-1]
# kwargs = {"image": image, "opacity": opacity, "rgb": rgb, "turbulence": turbulence}
def run(procedure, **kwargs):
weight_path = get_weight_path()
if "image_path" in kwargs.keys() and "image" in kwargs.keys():
raise Exception("Both image_path and image should not be passed as input.")
if "image_path" in kwargs.keys() and not os.path.isfile(kwargs['image_path']):
raise Exception("Input image file does not exist.")
if "image" in kwargs.keys() and not isinstance(kwargs['image'], np.ndarray) and not len(kwargs['image'].shape) == 3:
raise Exception("Invalid input image.")
return_image, remove_input_image = False, False
if "save_path" not in kwargs.keys():
kwargs["save_path"] = os.path.join(weight_path, "..", "tmp_filter2.png")
return_image = True
if "image" in kwargs.keys():
image_path = os.path.join(weight_path, "..", "tmp_filter.png")
channels = kwargs["image"].shape[2]
if channels == 3:
cv2.imwrite(image_path, kwargs["image"][:, :, ::-1])
kwargs["image_path"] = image_path
kwargs.pop("image")
remove_input_image = True
# print("Image saved.")
elif channels == 4:
cv2.imwrite(image_path, kwargs["image"][:, :, [2, 1, 0, 3]])
kwargs["image_path"] = image_path
kwargs.pop("image")
remove_input_image = True
# print("Image saved.")
else:
raise Exception("High-dimensional image not supported.")
with open(os.path.join(weight_path, "..", "gimp_ml_augment.pkl"), "wb") as file:
pickle.dump(
kwargs,
file,
)
command_str = "gimp-2.99 -idf --batch-interpreter=python-fu-eval -b - < " + os.path.join(
os.path.dirname(os.path.realpath(__file__)), procedure.strip()
) + ".py"
# print(command_str)
subprocess.call(command_str, shell=True)
if remove_input_image:
os.remove(kwargs["image_path"])
if return_image:
img = cv2.imread(kwargs["save_path"])
channels = img.shape[2]
os.remove(kwargs["save_path"])
return img[:, :, ::-1] if channels == 3 else img[:, :, [2, 1, 0, 3]]

@ -0,0 +1,90 @@
#!/usr/bin/env python3
# coding: utf-8
try:
import time
import os
import pickle
import gi
gi.require_version("Gimp", "3.0")
from gi.repository import Gimp, GObject, Gio
install_location = os.path.join(os.path.expanduser("~"), "GIMP-ML")
with open(os.path.join(install_location, "gimp_ml_augment.pkl"), "rb") as file:
data_output = pickle.load(file)
image_path = data_output['image_path']
opacity = data_output['opacity']
rgb = data_output['rgb']
save_path = data_output['save_path']
turbulence = data_output['turbulence']
image = Gimp.file_load(Gimp.RunMode.NONINTERACTIVE, Gio.file_new_for_path(image_path)) # image
image_layer = image.get_active_layer()
if image.get_base_type() is Gimp.ImageBaseType.RGB:
type = Gimp.ImageType.RGBA_IMAGE
else:
type = Gimp.ImageType.GRAYA_IMAGE
# fog = Gimp.Layer.new_from_drawable(image_layer, image)
fog = Gimp.Layer.new(image, "tmp",
image_layer.get_width(), image_layer.get_height(),
type, opacity,
Gimp.LayerMode.NORMAL)
fog.fill(Gimp.FillType.TRANSPARENT)
image.insert_layer(fog, image_layer.get_parent(), image.get_item_position(image_layer))
color = Gimp.RGB()
color.set(rgb[0], rgb[1], rgb[2])
Gimp.context_set_background(color)
fog.edit_fill(Gimp.FillType.BACKGROUND)
# create a layer mask for the new layer
mask = fog.create_mask(0)
fog.add_mask(mask)
# add some clouds to the layer
Gimp.get_pdb().run_procedure('plug-in-plasma', [
GObject.Value(Gimp.RunMode, Gimp.RunMode.NONINTERACTIVE),
GObject.Value(Gimp.Image, image),
GObject.Value(Gimp.Drawable, mask),
GObject.Value(GObject.TYPE_INT, int(time.time())),
GObject.Value(GObject.TYPE_DOUBLE, turbulence),
])
# apply the clouds to the layer
fog.remove_mask(Gimp.MaskApplyMode.APPLY)
fog.set_visible(True)
thumb = image.duplicate()
layer = thumb.merge_visible_layers(Gimp.MergeType.CLIP_TO_IMAGE)
# save
interlace, compression = 0, 2
Gimp.get_pdb().run_procedure(
"file-png-save",
[
GObject.Value(Gimp.RunMode, Gimp.RunMode.NONINTERACTIVE),
GObject.Value(Gimp.Image, thumb),
GObject.Value(GObject.TYPE_INT, 1),
GObject.Value(
Gimp.ObjectArray, Gimp.ObjectArray.new(Gimp.Drawable, [layer], 0)
),
GObject.Value(
Gio.File,
Gio.File.new_for_path(save_path),
),
GObject.Value(GObject.TYPE_BOOLEAN, interlace),
GObject.Value(GObject.TYPE_INT, compression),
# write all PNG chunks except oFFs(ets)
GObject.Value(GObject.TYPE_BOOLEAN, True),
GObject.Value(GObject.TYPE_BOOLEAN, True),
GObject.Value(GObject.TYPE_BOOLEAN, False),
GObject.Value(GObject.TYPE_BOOLEAN, True),
],
)
# quit
Gimp.get_pdb().run_procedure("gimp-quit", [GObject.Value(GObject.TYPE_BOOLEAN, True)])
except:
pass

@ -0,0 +1,69 @@
#!/usr/bin/env python3
# coding: utf-8
# def add_gaussian_blur(image_path, save_path):
try:
import os
import pickle
import gi
gi.require_version("Gimp", "3.0")
from gi.repository import Gimp, GObject, Gio
install_location = os.path.join(os.path.expanduser("~"), "GIMP-ML")
with open(os.path.join(install_location, "gimp_ml_augment.pkl"), "rb") as file:
data_output = pickle.load(file)
image_path = data_output['image_path']
save_path = data_output['save_path']
horizontal = data_output['horizontal']
vertical = data_output['vertical']
method = data_output['method']
image = Gimp.file_load(Gimp.RunMode.NONINTERACTIVE, Gio.file_new_for_path(image_path)) # image
image_layer = image.get_active_layer() # drawable
# run plugin
Gimp.get_pdb().run_procedure(
"plug-in-gauss",
[
GObject.Value(Gimp.RunMode, Gimp.RunMode.NONINTERACTIVE),
GObject.Value(Gimp.Image, image),
GObject.Value(Gimp.Drawable, image_layer),
GObject.Value(GObject.TYPE_DOUBLE, horizontal),
GObject.Value(GObject.TYPE_DOUBLE, vertical),
GObject.Value(GObject.TYPE_INT, method),
]
)
image_layer = image.get_active_layer()
# save
interlace, compression = 0, 2
Gimp.get_pdb().run_procedure(
"file-png-save",
[
GObject.Value(Gimp.RunMode, Gimp.RunMode.NONINTERACTIVE),
GObject.Value(Gimp.Image, image),
GObject.Value(GObject.TYPE_INT, 1),
GObject.Value(
Gimp.ObjectArray, Gimp.ObjectArray.new(Gimp.Drawable, [image_layer], 0)
),
GObject.Value(
Gio.File,
Gio.File.new_for_path(save_path),
),
GObject.Value(GObject.TYPE_BOOLEAN, interlace),
GObject.Value(GObject.TYPE_INT, compression),
# write all PNG chunks except oFFs(ets)
GObject.Value(GObject.TYPE_BOOLEAN, True),
GObject.Value(GObject.TYPE_BOOLEAN, True),
GObject.Value(GObject.TYPE_BOOLEAN, False),
GObject.Value(GObject.TYPE_BOOLEAN, True),
],
)
# quit
Gimp.get_pdb().run_procedure("gimp-quit", [GObject.Value(GObject.TYPE_BOOLEAN, True)])
except:
pass
# gimp-2.99 -idf --batch-interpreter=python-fu-eval -b - < gaussian_blur.py

@ -0,0 +1,267 @@
#!/usr/bin/env python3
# coding: utf-8
"""
.d8888b. 8888888 888b d888 8888888b. 888b d888 888
d88P Y88b 888 8888b d8888 888 Y88b 8888b d8888 888
888 888 888 88888b.d88888 888 888 88888b.d88888 888
888 888 888Y88888P888 888 d88P 888Y88888P888 888
888 88888 888 888 Y888P 888 8888888P" 888 Y888P 888 888
888 888 888 888 Y8P 888 888 888 Y8P 888 888
Y88b d88P 888 888 " 888 888 888 " 888 888
"Y8888P88 8888888 888 888 888 888 888 88888888
Performs Canny Edge Detection for current layer.
"""
import gi
gi.require_version("Gimp", "3.0")
gi.require_version("GimpUi", "3.0")
gi.require_version("Gtk", "3.0")
from gi.repository import Gimp, GimpUi, GObject, GLib, Gio, Gtk
import gettext
import subprocess
import pickle
import os
import sys
sys.path.extend([os.path.join(os.path.dirname(os.path.realpath(__file__)), "..")])
from plugin_utils import *
_ = gettext.gettext
image_paths = {
"colorpalette": os.path.join(
os.path.dirname(os.path.realpath(__file__)),
"..",
"colorpalette",
"color_palette.png",
),
"logo": os.path.join(
os.path.dirname(os.path.realpath(__file__)), "..", "images", "plugin_logo.png"
),
"error": os.path.join(
os.path.dirname(os.path.realpath(__file__)), "..", "images", "error_icon.png"
),
}
def canny(
procedure, image, drawable, min_val, max_val, progress_bar, config_path_output
):
# Save inference parameters and layers
weight_path = config_path_output["weight_path"]
python_path = config_path_output["python_path"]
plugin_path = config_path_output["plugin_path"]
Gimp.context_push()
image.undo_group_start()
save_image(image, drawable, os.path.join(weight_path, "..", "cache.png"))
with open(os.path.join(weight_path, "..", "gimp_ml_run.pkl"), "wb") as file:
pickle.dump(
{
"min_val": int(min_val),
"max_val": int(max_val),
"inference_status": "started",
},
file,
)
# Run inference and load as layer
subprocess.call([python_path, plugin_path])
subprocess.call([python_path, plugin_path])
with open(os.path.join(weight_path, "..", "gimp_ml_run.pkl"), "rb") as file:
data_output = pickle.load(file)
image.undo_group_end()
Gimp.context_pop()
if data_output["inference_status"] == "success":
result = Gimp.file_load(
Gimp.RunMode.NONINTERACTIVE,
Gio.file_new_for_path(os.path.join(weight_path, "..", "cache.png")),
)
result_layer = result.get_active_layer()
copy = Gimp.Layer.new_from_drawable(result_layer, image)
copy.set_name("Canny Edge")
copy.set_mode(Gimp.LayerMode.NORMAL_LEGACY) # DIFFERENCE_LEGACY
image.insert_layer(copy, None, -1)
# Remove temporary layers that were saved
my_dir = os.path.join(weight_path, "..")
for f_name in os.listdir(my_dir):
if f_name.startswith("cache"):
os.remove(os.path.join(my_dir, f_name))
return procedure.new_return_values(Gimp.PDBStatusType.SUCCESS, GLib.Error())
else:
show_dialog(
"Inference not successful. See error_log.txt in GIMP-ML folder.",
"Error !",
"error",
image_paths
)
return procedure.new_return_values(Gimp.PDBStatusType.SUCCESS, GLib.Error())
def run(procedure, run_mode, image, n_drawables, layer, args, data):
min_val = args.index(0)
max_val = args.index(1)
if run_mode == Gimp.RunMode.INTERACTIVE:
# Get all paths
config_path = os.path.join(
os.path.dirname(os.path.realpath(__file__)), "..", "..", "tools"
)
with open(os.path.join(config_path, "gimp_ml_config.pkl"), "rb") as file:
config_path_output = pickle.load(file)
python_path = config_path_output["python_path"]
config_path_output["plugin_path"] = os.path.join(config_path, "canny.py")
config = procedure.create_config()
config.begin_run(image, run_mode, args)
GimpUi.init("canny.py")
use_header_bar = Gtk.Settings.get_default().get_property(
"gtk-dialogs-use-header"
)
dialog = GimpUi.Dialog(use_header_bar=use_header_bar, title=_("Canny Edge..."))
dialog.add_button("_Cancel", Gtk.ResponseType.CANCEL)
dialog.add_button("_Help", Gtk.ResponseType.APPLY)
dialog.add_button("_Run Inference", Gtk.ResponseType.OK)
vbox = Gtk.Box(
orientation=Gtk.Orientation.VERTICAL, homogeneous=False, spacing=10
)
dialog.get_content_area().add(vbox)
vbox.show()
# Create grid to set all the properties inside.
grid = Gtk.Grid()
grid.set_column_homogeneous(False)
grid.set_border_width(10)
grid.set_column_spacing(10)
grid.set_row_spacing(10)
vbox.add(grid)
grid.show()
# Show Logo
logo = Gtk.Image.new_from_file(image_paths["logo"])
# grid.attach(logo, 0, 0, 1, 1)
vbox.pack_start(logo, False, False, 1)
logo.show()
# Show License
license_text = _("PLUGIN LICENSE : Apache 2")
label = Gtk.Label(label=license_text)
# grid.attach(label, 1, 1, 1, 1)
vbox.pack_start(label, False, False, 1)
label.show()
# min_val parameter
label = Gtk.Label.new_with_mnemonic(_("_Min"))
grid.attach(label, 0, 0, 1, 1)
label.show()
spin = GimpUi.prop_spin_button_new(
config, "min_val", step_increment=1, page_increment=10, digits=0
)
grid.attach(spin, 1, 0, 1, 1)
spin.show()
# max_val parameter
label = Gtk.Label.new_with_mnemonic(_("_Max"))
grid.attach(label, 2, 0, 1, 1)
label.show()
spin = GimpUi.prop_spin_button_new(
config, "max_val", step_increment=1, page_increment=10, digits=0
)
grid.attach(spin, 3, 0, 1, 1)
spin.show()
progress_bar = Gtk.ProgressBar()
vbox.add(progress_bar)
progress_bar.show()
# Wait for user to click
dialog.show()
while True:
response = dialog.run()
if response == Gtk.ResponseType.OK:
min_val = config.get_property("min_val")
max_val = config.get_property("max_val")
result = canny(
procedure,
image,
layer,
min_val,
max_val,
progress_bar,
config_path_output,
)
# If the execution was successful, save parameters so they will be restored next time we show dialog.
if result.index(0) == Gimp.PDBStatusType.SUCCESS and config is not None:
config.end_run(Gimp.PDBStatusType.SUCCESS)
return result
elif response == Gtk.ResponseType.APPLY:
url = "https://kritiksoman.github.io/GIMP-ML-Docs/docs-page.html#item-7-16"
Gio.app_info_launch_default_for_uri(url, None)
continue
else:
dialog.destroy()
return procedure.new_return_values(
Gimp.PDBStatusType.CANCEL, GLib.Error()
)
class Canny(Gimp.PlugIn):
## Parameters ##
__gproperties__ = {
"min_val": (
float,
_("_Min"),
"Min threshold",
0,
254,
100,
GObject.ParamFlags.READWRITE,
),
"max_val": (
float,
_("_Max"),
"Max threshold",
1,
255,
200,
GObject.ParamFlags.READWRITE,
),
}
## GimpPlugIn virtual methods ##
def do_query_procedures(self):
self.set_translation_domain(
"gimp30-python", Gio.file_new_for_path(Gimp.locale_directory())
)
return ["canny"]
def do_create_procedure(self, name):
procedure = None
if name == "canny":
procedure = Gimp.ImageProcedure.new(
self, name, Gimp.PDBProcType.PLUGIN, run, None
)
procedure.set_image_types("*")
procedure.set_documentation(
N_("Performs Canny Edge Detection for current layer."),
globals()[
"__doc__"
], # This includes the docstring, on the top of the file
name,
)
procedure.set_menu_label(N_("_Canny Edge..."))
procedure.set_attribution("Kritik Soman", "GIMP-ML", "2021")
procedure.add_menu_path("<Image>/Layer/GIMP-ML/")
procedure.add_argument_from_property(self, "min_val")
procedure.add_argument_from_property(self, "max_val")
return procedure
Gimp.main(Canny.__gtype__, sys.argv)

@ -0,0 +1,224 @@
#!/usr/bin/env python3
# coding: utf-8
"""
.d8888b. 8888888 888b d888 8888888b. 888b d888 888
d88P Y88b 888 8888b d8888 888 Y88b 8888b d8888 888
888 888 888 88888b.d88888 888 888 88888b.d88888 888
888 888 888Y88888P888 888 d88P 888Y88888P888 888
888 88888 888 888 Y888P 888 8888888P" 888 Y888P 888 888
888 888 888 888 Y8P 888 888 888 Y8P 888 888
Y88b d88P 888 888 " 888 888 888 " 888 888
"Y8888P88 8888888 888 888 888 888 888 88888888
Object detection on the current layer.
"""
import gi
gi.require_version("Gimp", "3.0")
gi.require_version("GimpUi", "3.0")
gi.require_version("Gtk", "3.0")
from gi.repository import Gimp, GimpUi, GObject, GLib, Gio, Gtk
import gettext
import subprocess
import pickle
import os
import sys
sys.path.extend([os.path.join(os.path.dirname(os.path.realpath(__file__)), "..")])
from plugin_utils import *
_ = gettext.gettext
image_paths = {
"logo": os.path.join(
os.path.dirname(os.path.realpath(__file__)), "..", "images", "plugin_logo.png"
),
"error": os.path.join(
os.path.dirname(os.path.realpath(__file__)), "..", "images", "error_icon.png"
),
}
def detectobjects(procedure, image, drawable, force_cpu, progress_bar, config_path_output):
# Save inference parameters and layers
weight_path = config_path_output["weight_path"]
python_path = config_path_output["python_path"]
plugin_path = config_path_output["plugin_path"]
Gimp.context_push()
image.undo_group_start()
save_image(image, drawable, os.path.join(weight_path, "..", "cache.png"))
with open(os.path.join(weight_path, "..", "gimp_ml_run.pkl"), "wb") as file:
pickle.dump({"force_cpu": bool(force_cpu), "inference_status": "started", "get_predict_image": True}, file)
image.undo_group_end()
Gimp.context_pop()
# Run inference and load as layer
subprocess.call([python_path, plugin_path])
with open(os.path.join(weight_path, "..", "gimp_ml_run.pkl"), "rb") as file:
data_output = pickle.load(file)
if data_output["inference_status"] == "success":
result = Gimp.file_load(
Gimp.RunMode.NONINTERACTIVE,
Gio.file_new_for_path(os.path.join(weight_path, "..", "cache.png")),
)
result_layer = result.get_active_layer()
copy = Gimp.Layer.new_from_drawable(result_layer, image)
copy.set_name("Objects detected.")
copy.set_mode(Gimp.LayerMode.NORMAL_LEGACY) # DIFFERENCE_LEGACY
image.insert_layer(copy, None, -1)
# Remove temporary layers that were saved
my_dir = os.path.join(weight_path, "..")
for f_name in os.listdir(my_dir):
if f_name.startswith("cache"):
os.remove(os.path.join(my_dir, f_name))
return procedure.new_return_values(Gimp.PDBStatusType.SUCCESS, GLib.Error())
else:
show_dialog(
"Inference not successful. See error_log.txt in GIMP-ML folder.",
"Error !",
"error",
image_paths
)
return procedure.new_return_values(Gimp.PDBStatusType.SUCCESS, GLib.Error())
def run(procedure, run_mode, image, n_drawables, layer, args, data):
force_cpu = args.index(0)
if run_mode == Gimp.RunMode.INTERACTIVE:
# Get all paths
config_path = os.path.join(
os.path.dirname(os.path.realpath(__file__)), "..", "..", "tools"
)
with open(os.path.join(config_path, "gimp_ml_config.pkl"), "rb") as file:
config_path_output = pickle.load(file)
python_path = config_path_output["python_path"]
config_path_output["plugin_path"] = os.path.join(config_path, "detectobjects.py")
config = procedure.create_config()
config.set_property("force_cpu", force_cpu)
config.begin_run(image, run_mode, args)
GimpUi.init("detectobjects.py")
use_header_bar = Gtk.Settings.get_default().get_property(
"gtk-dialogs-use-header"
)
dialog = GimpUi.Dialog(use_header_bar=use_header_bar, title=_("Detect Objects..."))
dialog.add_button("_Cancel", Gtk.ResponseType.CANCEL)
dialog.add_button("_Help", Gtk.ResponseType.APPLY)
dialog.add_button("_Run Inference", Gtk.ResponseType.OK)
vbox = Gtk.Box(
orientation=Gtk.Orientation.VERTICAL, homogeneous=False, spacing=10
)
dialog.get_content_area().add(vbox)
vbox.show()
# Create grid to set all the properties inside.
grid = Gtk.Grid()
grid.set_column_homogeneous(False)
grid.set_border_width(10)
grid.set_column_spacing(10)
grid.set_row_spacing(10)
vbox.add(grid)
grid.show()
# Force CPU parameter
spin = GimpUi.prop_check_button_new(config, "force_cpu", _("Force _CPU"))
spin.set_tooltip_text(
_(
"If checked, CPU is used for model inference."
" Otherwise, GPU will be used if available."
)
)
grid.attach(spin, 1, 2, 1, 1)
spin.show()
# Show Logo
logo = Gtk.Image.new_from_file(image_paths["logo"])
# grid.attach(logo, 0, 0, 1, 1)
vbox.pack_start(logo, False, False, 1)
logo.show()
# Show License
license_text = _("PLUGIN LICENSE : Apache-2.0")
label = Gtk.Label(label=license_text)
# grid.attach(label, 1, 1, 1, 1)
vbox.pack_start(label, False, False, 1)
label.show()
progress_bar = Gtk.ProgressBar()
vbox.add(progress_bar)
progress_bar.show()
# Wait for user to click
dialog.show()
while True:
response = dialog.run()
if response == Gtk.ResponseType.OK:
force_cpu = config.get_property("force_cpu")
result = detectobjects(
procedure, image, layer, force_cpu, progress_bar, config_path_output
)
# super_resolution(procedure, image, n_drawables, layer, force_cpu, progress_bar, config_path_output)
# If the execution was successful, save parameters so they will be restored next time we show dialog.
if result.index(0) == Gimp.PDBStatusType.SUCCESS and config is not None:
config.end_run(Gimp.PDBStatusType.SUCCESS)
return result
elif response == Gtk.ResponseType.APPLY:
url = "https://kritiksoman.github.io/GIMP-ML-Docs/docs-page.html#item-7-14"
Gio.app_info_launch_default_for_uri(url, None)
continue
else:
dialog.destroy()
return procedure.new_return_values(
Gimp.PDBStatusType.CANCEL, GLib.Error()
)
class DetectObjects(Gimp.PlugIn):
## Parameters ##
__gproperties__ = {
"force_cpu": (
bool,
_("Force _CPU"),
"Force CPU",
False,
GObject.ParamFlags.READWRITE,
),
}
## GimpPlugIn virtual methods ##
def do_query_procedures(self):
self.set_translation_domain(
"gimp30-python", Gio.file_new_for_path(Gimp.locale_directory())
)
return ["detectobjects"]
def do_create_procedure(self, name):
procedure = None
if name == "detectobjects":
procedure = Gimp.ImageProcedure.new(
self, name, Gimp.PDBProcType.PLUGIN, run, None
)
procedure.set_image_types("*")
procedure.set_documentation(
N_("Detects objects on the current layer."),
globals()[
"__doc__"
], # This includes the docstring, on the top of the file
name,
)
procedure.set_menu_label(N_("Detect Objects..."))
procedure.set_attribution("Kritik Soman", "GIMP-ML", "2021")
procedure.add_menu_path("<Image>/Layer/GIMP-ML/")
procedure.add_argument_from_property(self, "force_cpu")
return procedure
Gimp.main(DetectObjects.__gtype__, sys.argv)

@ -0,0 +1,310 @@
#!/usr/bin/env python3
# coding: utf-8
"""
.d8888b. 8888888 888b d888 8888888b. 888b d888 888
d88P Y88b 888 8888b d8888 888 Y88b 8888b d8888 888
888 888 888 88888b.d88888 888 888 88888b.d88888 888
888 888 888Y88888P888 888 d88P 888Y88888P888 888
888 88888 888 888 Y888P 888 8888888P" 888 Y888P 888 888
888 888 888 888 Y8P 888 888 888 Y8P 888 888
Y88b d88P 888 888 " 888 888 888 " 888 888
"Y8888P88 8888888 888 888 888 888 888 88888888
Object detection on the current layer.
"""
import gi
gi.require_version("Gimp", "3.0")
gi.require_version("GimpUi", "3.0")
gi.require_version("Gtk", "3.0")
from gi.repository import Gimp, GimpUi, GObject, GLib, Gio, Gtk
import gettext
import subprocess
import pickle
import os
import sys
sys.path.extend([os.path.join(os.path.dirname(os.path.realpath(__file__)), "..")])
from plugin_utils import *
_ = gettext.gettext
image_paths = {
"logo": os.path.join(
os.path.dirname(os.path.realpath(__file__)), "..", "images", "plugin_logo.png"
),
"error": os.path.join(
os.path.dirname(os.path.realpath(__file__)), "..", "images", "error_icon.png"
),
}
def filterfolder(procedure, args_dict, config_path_output):
# Save inference parameters and layers
weight_path = config_path_output["weight_path"]
python_path = config_path_output["python_path"]
plugin_path = config_path_output["plugin_path"]
#
# Gimp.context_push()
# image.undo_group_start()
#
# save_image(image, drawable, os.path.join(weight_path, "..", "cache.png"))
args_dict["inference_status"] = "started"
args_dict["get_predict_image"] = False
with open(os.path.join(weight_path, "..", "gimp_ml_run.pkl"), "wb") as file:
pickle.dump(args_dict, file)
# image.undo_group_end()
# Gimp.context_pop()
# Run inference and load as layer
subprocess.call([python_path, plugin_path])
with open(os.path.join(weight_path, "..", "gimp_ml_run.pkl"), "rb") as file:
data_output = pickle.load(file)
if data_output["inference_status"] == "success":
count = data_output["count"]
if count == 0:
message = "No files found with entered objects."
elif count == 1:
message = str(count) + " file moved to " + os.path.join(args_dict["image_path"], "filtered")
else:
message = str(count) + " files moved to " + os.path.join(args_dict["image_path"], "filtered")
show_dialog(
message,
"Inference Complete.",
"logo",
image_paths
)
# result = Gimp.file_load(
# Gimp.RunMode.NONINTERACTIVE,
# Gio.file_new_for_path(os.path.join(weight_path, "..", "cache.png")),
# )
# result_layer = result.get_active_layer()
# copy = Gimp.Layer.new_from_drawable(result_layer, image)
# copy.set_name("Objects detected.")
# copy.set_mode(Gimp.LayerMode.NORMAL_LEGACY) # DIFFERENCE_LEGACY
# image.insert_layer(copy, None, -1)
#
# # Remove temporary layers that were saved
# my_dir = os.path.join(weight_path, "..")
# for f_name in os.listdir(my_dir):
# if f_name.startswith("cache"):
# os.remove(os.path.join(my_dir, f_name))
return procedure.new_return_values(Gimp.PDBStatusType.SUCCESS, GLib.Error())
else:
show_dialog(
"Inference not successful. See error_log.txt in GIMP-ML folder.",
"Error !",
"error",
image_paths
)
return procedure.new_return_values(Gimp.PDBStatusType.SUCCESS, GLib.Error())
def run(procedure, run_mode, args):
args_dict = {}
# force_cpu = args.index(0)
# if run_mode == Gimp.RunMode.INTERACTIVE:
# Get all paths
config_path = os.path.join(
os.path.dirname(os.path.realpath(__file__)), "..", "..", "tools"
)
with open(os.path.join(config_path, "gimp_ml_config.pkl"), "rb") as file:
config_path_output = pickle.load(file)
python_path = config_path_output["python_path"]
config_path_output["plugin_path"] = os.path.join(config_path, "detectobjects.py")
config = procedure.create_config()
# config.set_property("force_cpu", force_cpu)
# config.begin_run(image, run_mode, args)
GimpUi.init("filterfolder.py")
use_header_bar = Gtk.Settings.get_default().get_property(
"gtk-dialogs-use-header"
)
dialog = GimpUi.Dialog(use_header_bar=use_header_bar, title=_("Filter folder..."))
dialog.add_button("_Cancel", Gtk.ResponseType.CANCEL)
dialog.add_button("_Help", Gtk.ResponseType.APPLY)
dialog.add_button("_Run Inference", Gtk.ResponseType.OK)
vbox = Gtk.Box(
orientation=Gtk.Orientation.VERTICAL, homogeneous=False, spacing=10
)
dialog.get_content_area().add(vbox)
vbox.show()
# Create grid to set all the properties inside.
grid = Gtk.Grid()
grid.set_column_homogeneous(False)
grid.set_border_width(10)
grid.set_column_spacing(10)
grid.set_row_spacing(10)
vbox.add(grid)
grid.show()
# # Force CPU parameter
# spin = GimpUi.prop_check_button_new(config, "force_cpu", _("Force _CPU"))
# spin.set_tooltip_text(
# _(
# "If checked, CPU is used for model inference."
# " Otherwise, GPU will be used if available."
# )
# )
# grid.attach(spin, 1, 2, 1, 1)
# spin.show()
# UI for the file parameter
def choose_file(widget):
if file_chooser_dialog.run() == Gtk.ResponseType.OK:
if file_chooser_dialog.get_file() is not None:
# config.set_property("file", file_chooser_dialog.get_file())
file_entry.set_text(file_chooser_dialog.get_file().get_path())
file_chooser_dialog.hide()
file_chooser_button = Gtk.Button.new_with_mnemonic(label=_("_Folder..."))
grid.attach(file_chooser_button, 0, 0, 1, 1)
file_chooser_button.show()
file_chooser_button.connect("clicked", choose_file)
file_entry = Gtk.Entry.new()
grid.attach(file_entry, 1, 0, 1, 1)
file_entry.set_width_chars(40)
file_entry.set_placeholder_text(_("Choose export folder..."))
# if gio_file is not None:
file_entry.set_text(os.path.join(os.path.expanduser("~"), "Pictures"))
file_entry.show()
file_chooser_dialog = Gtk.FileChooserDialog(
use_header_bar=use_header_bar,
title=_("Frame Export folder..."),
action=Gtk.FileChooserAction.SELECT_FOLDER,
)
file_chooser_dialog.add_button("_Cancel", Gtk.ResponseType.CANCEL)
file_chooser_dialog.add_button("_OK", Gtk.ResponseType.OK)
# Filter Objects
filter_objects = Gtk.Entry.new()
grid.attach(filter_objects, 1, 1, 1, 1)
filter_objects.set_width_chars(40)
# file_entry.set_placeholder_text(_("..."))
# if gio_file is not None:
filter_objects.set_text("Person|Cars")
filter_objects.show()
filer_objects_text = _("Objects to search")
filter_label = Gtk.Label(label=filer_objects_text)
grid.attach(filter_label, 0, 1, 1, 1)
vbox.pack_start(filter_label, False, False, 1)
filter_label.show()
# Show Logo
logo = Gtk.Image.new_from_file(image_paths["logo"])
# grid.attach(logo, 0, 0, 1, 1)
vbox.pack_start(logo, False, False, 1)
logo.show()
# Show Custom Text
license_text = _("For complete list of objects see help.")
label = Gtk.Label(label=license_text)
# grid.attach(label, 1, 2, 1, 1)
vbox.pack_start(label, False, False, 1)
label.show()
# Show License
license_text = _("PLUGIN LICENSE : Apache-2.0")
label = Gtk.Label(label=license_text)
# grid.attach(label, 1, 1, 1, 1)
vbox.pack_start(label, False, False, 1)
label.show()
progress_bar = Gtk.ProgressBar()
vbox.add(progress_bar)
progress_bar.show()
# Wait for user to click
dialog.show()
while True:
response = dialog.run()
if response == Gtk.ResponseType.OK:
args_dict["image_path"] = file_entry.get_text()
args_dict["objects"] = filter_objects.get_text()
# force_cpu = config.get_property("force_cpu")
result = filterfolder(
procedure, args_dict, config_path_output
)
# super_resolution(procedure, image, n_drawables, layer, force_cpu, progress_bar, config_path_output)
# If the execution was successful, save parameters so they will be restored next time we show dialog.
# if result.index(0) == Gimp.PDBStatusType.SUCCESS and config is not None:
# config.end_run(Gimp.PDBStatusType.SUCCESS)
# return result
if result.index(0) == Gimp.PDBStatusType.SUCCESS and config is not None:
config.end_run(Gimp.PDBStatusType.SUCCESS)
return result
elif response == Gtk.ResponseType.APPLY:
url = "https://kritiksoman.github.io/GIMP-ML-Docs/docs-page.html#item-7-15"
Gio.app_info_launch_default_for_uri(url, None)
continue
else:
dialog.destroy()
return procedure.new_return_values(
Gimp.PDBStatusType.CANCEL, GLib.Error()
)
class FilterFolder(Gimp.PlugIn):
## Properties: parameters ##
# ## Parameters ##
# __gproperties__ = {
# "force_cpu": (
# bool,
# _("Force _CPU"),
# "Force CPU",
# False,
# GObject.ParamFlags.READWRITE,
# ),
# }
@GObject.Property(type=Gimp.RunMode,
default=Gimp.RunMode.NONINTERACTIVE,
nick="Run mode", blurb="The run mode")
def run_mode(self):
"""Read-write integer property."""
return self.runmode
@run_mode.setter
def run_mode(self, runmode):
self.runmode = runmode
## GimpPlugIn virtual methods ##
def do_query_procedures(self):
self.set_translation_domain(
"gimp30-python", Gio.file_new_for_path(Gimp.locale_directory())
)
return ["filterfolder"]
def do_create_procedure(self, name):
procedure = None
if name == "filterfolder":
procedure = Gimp.Procedure.new(
self, name, Gimp.PDBProcType.PLUGIN, run, None
)
# procedure.set_image_types("*")
procedure.set_documentation(
N_("Detects objects on the current layer."),
globals()[
"__doc__"
], # This includes the docstring, on the top of the file
name,
)
procedure.set_menu_label(N_("Filter Folder Objects..."))
procedure.set_attribution("Kritik Soman", "GIMP-ML", "2021")
procedure.add_menu_path("<Image>/Layer/GIMP-ML/")
procedure.add_argument_from_property(self, "run-mode")
# procedure.add_argument_from_property(self, "force_cpu")
return procedure
Gimp.main(FilterFolder.__gtype__, sys.argv)

@ -0,0 +1,39 @@
import pickle
import os
import cv2
from gimpml.tools.tools_utils import get_weight_path
import numpy as np
def get_edge(image, min_val=100, max_val=200):
if image.shape[2] == 4: # get rid of alpha channel
image = image[:, :, 0:3]
edges = cv2.Canny(image, min_val, max_val)
edges = np.dstack([edges, edges, edges])
return edges
if __name__ == "__main__":
weight_path = get_weight_path()
with open(os.path.join(weight_path, "..", "gimp_ml_run.pkl"), "rb") as file:
data_output = pickle.load(file)
min_val = data_output["min_val"]
max_val = data_output["max_val"]
image = cv2.imread(os.path.join(weight_path, "..", "cache.png"))[:, :, ::-1]
try:
output = get_edge(image, min_val=min_val, max_val=max_val)
cv2.imwrite(os.path.join(weight_path, "..", "cache.png"), output[:, :, ::-1])
with open(os.path.join(weight_path, "..", "gimp_ml_run.pkl"), "wb") as file:
pickle.dump({"inference_status": "success"}, file)
# Remove old temporary error files that were saved
my_dir = os.path.join(weight_path, "..")
for f_name in os.listdir(my_dir):
if f_name.startswith("error_log"):
os.remove(os.path.join(my_dir, f_name))
except Exception as error:
with open(os.path.join(weight_path, "..", "gimp_ml_run.pkl"), "wb") as file:
pickle.dump({"inference_status": "failed"}, file)
with open(os.path.join(weight_path, "..", "error_log.txt"), "w") as file:
file.write(str(error))

@ -0,0 +1,134 @@
import sys
import os
plugin_loc = os.path.join(os.path.dirname(os.path.realpath(__file__)), "pytorch-YOLOv4")
sys.path.extend([plugin_loc])
import cv2
import torch
from yolo_models import Yolov4
from yolo_tool.utils import load_class_names, plot_boxes_cv2, get_objects
from yolo_tool.torch_utils import do_detect
from gimpml.tools.tools_utils import get_weight_path
import pickle
import traceback
import shutil
import numpy as np
def scale_image(image):
height, width = image.shape[:2]
if height > 320 or width > 320:
if height > 320:
n = (height - 320) / 96
if width > 320:
m = (width - 320) / 96
sized = cv2.resize(image, (320 + 96 * int(np.ceil(m)), 320 + 96 * int(np.ceil(n))))
else:
sized = cv2.resize(image, (320, 320))
scale_width = sized.shape[1] / width
scale_height = sized.shape[0] / height
return sized, scale_width, scale_height
def get_detect_objects(image=None, image_path=None, cpu_flag=False, weight_path=None, get_predict_image=False,
n_classes=80):
if image is not None and image_path is not None:
raise Exception("Invalid input.")
if weight_path is None:
weight_path = get_weight_path()
weightfile = os.path.join(weight_path, "yolo", "yolov4.pth")
use_cuda = False
if torch.cuda.is_available() and not cpu_flag:
use_cuda = True
if n_classes == 20:
namesfile = os.path.join(os.path.dirname(os.path.realpath(__file__)), "pytorch-YOLOv4", "yolo_data", "voc.names")
elif n_classes == 80:
namesfile = os.path.join(os.path.dirname(os.path.realpath(__file__)), "pytorch-YOLOv4", "yolo_data", "coco.names")
else:
print("please give namefile")
class_names = load_class_names(namesfile)
model = Yolov4(yolov4conv137weight=None, n_classes=n_classes, inference=True)
if use_cuda:
pretrained_dict = torch.load(weightfile, map_location=torch.device('cuda'))
else:
pretrained_dict = torch.load(weightfile, map_location=torch.device('cpu'))
model.load_state_dict(pretrained_dict)
if use_cuda:
model.cuda()
result = []
if image is not None and image_path is None:
sized, scale_width, scale_height = scale_image(image)
with torch.no_grad():
boxes = do_detect(model, sized, 0.4, 0.6, use_cuda)
result.append(plot_boxes_cv2(image, boxes[0], scale_width, scale_height, class_names=class_names) if get_predict_image else
(get_objects(image, boxes[0], scale_width, scale_height, class_names), "image"))
elif image is None and image_path is not None:
for filename in os.listdir(image_path):
try:
image = cv2.imread(os.path.join(image_path, filename))[:, :, [2, 1, 0]]
sized, scale_width, scale_height = scale_image(image)
with torch.no_grad():
boxes = do_detect(model, sized, 0.4, 0.6, use_cuda)
result.append(plot_boxes_cv2(sized, boxes[0], scale_width, scale_height, class_names=class_names) if get_predict_image else
(get_objects(sized, boxes[0], scale_width, scale_height, class_names),
os.path.join(image_path, filename)))
except:
pass
return result
if __name__ == "__main__":
weight_path = get_weight_path()
with open(os.path.join(weight_path, "..", "gimp_ml_run.pkl"), "rb") as file:
data_output = pickle.load(file)
force_cpu = False #data_output["force_cpu"]
get_predict_image = data_output["get_predict_image"]
image1, image_path = None, None
if get_predict_image:
image1 = cv2.imread(os.path.join(weight_path, "..", "cache.png"))
else:
image_path = data_output["image_path"]
search_objects = [x.lower().strip() for x in data_output["objects"].split("|")]
try:
if get_predict_image:
count = 0
output = get_detect_objects(image=image1, cpu_flag=force_cpu, weight_path=weight_path, get_predict_image=True)[0]
# with open(os.path.join(weight_path, "..", "output.txt"), "w") as file:
# file.write(str(output))
cv2.imwrite(os.path.join(weight_path, "..", "cache.png"), output)
else:
count = 0
output = get_detect_objects(image_path=image_path, cpu_flag=force_cpu, weight_path=weight_path)
save_filtered_path = os.path.join(image_path, "filtered")
if not os.path.exists(save_filtered_path):
os.makedirs(save_filtered_path)
for res in output:
if any([obj[-2] in search_objects for obj in res[0]]):
head, tail = os.path.split(res[-1])
shutil.move(res[-1], os.path.join(head, "filtered", tail))
count += 1
# with open(os.path.join(weight_path, "..", "tmp.txt"), "w") as file:
# file.write(str(output))
with open(os.path.join(weight_path, "..", "gimp_ml_run.pkl"), "wb") as file:
pickle.dump({"inference_status": "success", "force_cpu": force_cpu, "count": count}, file)
# Remove old temporary error files that were saved
my_dir = os.path.join(weight_path, "..")
for f_name in os.listdir(my_dir):
if f_name.startswith("error_log"):
os.remove(os.path.join(my_dir, f_name))
except Exception as error:
with open(os.path.join(weight_path, "..", "gimp_ml_run.pkl"), "wb") as file:
pickle.dump({"inference_status": "failed"}, file)
with open(os.path.join(weight_path, "..", "error_log.txt"), "w") as file:
# file.write(str(error))
e_type, e_val, e_tb = sys.exc_info()
traceback.print_exception(e_type, e_val, e_tb, file=file)

@ -26,3 +26,4 @@ edgeconnect/psv,11vIrpFaAHhgPN0yixFbN7ZNY78ooefiq,10.8,EdgeModel_dis.pth,ea6c734
edgeconnect/psv,11taSeBwJXj3AC1qucNHFUgTOTDIbyOLz,42,EdgeModel_gen.pth,40c83e91ace061acd2bd95421750ffaf
edgeconnect/psv,122BaS0KobaZqsU5mZcIR4pTsoQz__1k8,10.8,InpaintingModel_dis.pth,bf9bb863592605237e620b8d73db225e
edgeconnect/psv,11wPatO4UAIuPc_9Se99QvlKwGRiw62PY,42,InpaintingModel_gen.pth,afc0ce9b90413298972a2ef1fc65a3c7
yolo,1-1m-rpIsbolCUGZRdsrKXq-KsT4A-Iwl,246,yolov4.pth,fa40d42ad9f3eb35abdee056aef3f936
1 model file_id fileSize mFName md5sum
26 edgeconnect/psv 11taSeBwJXj3AC1qucNHFUgTOTDIbyOLz 42 EdgeModel_gen.pth 40c83e91ace061acd2bd95421750ffaf
27 edgeconnect/psv 122BaS0KobaZqsU5mZcIR4pTsoQz__1k8 10.8 InpaintingModel_dis.pth bf9bb863592605237e620b8d73db225e
28 edgeconnect/psv 11wPatO4UAIuPc_9Se99QvlKwGRiw62PY 42 InpaintingModel_gen.pth afc0ce9b90413298972a2ef1fc65a3c7
29 yolo 1-1m-rpIsbolCUGZRdsrKXq-KsT4A-Iwl 246 yolov4.pth fa40d42ad9f3eb35abdee056aef3f936

@ -0,0 +1,202 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

@ -0,0 +1,80 @@
person
bicycle
car
motorbike
aeroplane
bus
train
truck
boat
traffic light
fire hydrant
stop sign
parking meter
bench
bird
cat
dog
horse
sheep
cow
elephant
bear
zebra
giraffe
backpack
umbrella
handbag
tie
suitcase
frisbee
skis
snowboard
sports ball
kite
baseball bat
baseball glove
skateboard
surfboard
tennis racket
bottle
wine glass
cup
fork
knife
spoon
bowl
banana
apple
sandwich
orange
broccoli
carrot
hot dog
pizza
donut
cake
chair
sofa
pottedplant
bed
diningtable
toilet
tvmonitor
laptop
mouse
remote
keyboard
cell phone
microwave
oven
toaster
sink
refrigerator
book
clock
vase
scissors
teddy bear
hair drier
toothbrush

Binary file not shown.

After

Width:  |  Height:  |  Size: 160 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 374 KiB

@ -0,0 +1,20 @@
aeroplane
bicycle
bird
boat
bottle
bus
car
cat
chair
cow
diningtable
dog
horse
motorbike
person
pottedplant
sheep
sofa
train
tvmonitor

@ -0,0 +1,450 @@
import torch
from torch import nn
import torch.nn.functional as F
from yolo_tool.torch_utils import *
from yolo_tool.yolo_layer import YoloLayer
class Mish(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
x = x * (torch.tanh(torch.nn.functional.softplus(x)))
return x
class Upsample(nn.Module):
def __init__(self):
super(Upsample, self).__init__()
def forward(self, x, target_size, inference=False):
assert (x.data.dim() == 4)
# _, _, tH, tW = target_size
if inference:
#B = x.data.size(0)
#C = x.data.size(1)
#H = x.data.size(2)
#W = x.data.size(3)
return x.view(x.size(0), x.size(1), x.size(2), 1, x.size(3), 1).\
expand(x.size(0), x.size(1), x.size(2), target_size[2] // x.size(2), x.size(3), target_size[3] // x.size(3)).\
contiguous().view(x.size(0), x.size(1), target_size[2], target_size[3])
else:
return F.interpolate(x, size=(target_size[2], target_size[3]), mode='nearest')
class Conv_Bn_Activation(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, activation, bn=True, bias=False):
super().__init__()
pad = (kernel_size - 1) // 2
self.conv = nn.ModuleList()
if bias:
self.conv.append(nn.Conv2d(in_channels, out_channels, kernel_size, stride, pad))
else:
self.conv.append(nn.Conv2d(in_channels, out_channels, kernel_size, stride, pad, bias=False))
if bn:
self.conv.append(nn.BatchNorm2d(out_channels))
if activation == "mish":
self.conv.append(Mish())
elif activation == "relu":
self.conv.append(nn.ReLU(inplace=True))
elif activation == "leaky":
self.conv.append(nn.LeakyReLU(0.1, inplace=True))
elif activation == "linear":
pass
else:
print("activate error !!! {} {} {}".format(sys._getframe().f_code.co_filename,
sys._getframe().f_code.co_name, sys._getframe().f_lineno))
def forward(self, x):
for l in self.conv:
x = l(x)
return x
class ResBlock(nn.Module):
"""
Sequential residual blocks each of which consists of \
two convolution layers.
Args:
ch (int): number of input and output channels.
nblocks (int): number of residual blocks.
shortcut (bool): if True, residual tensor addition is enabled.
"""
def __init__(self, ch, nblocks=1, shortcut=True):
super().__init__()
self.shortcut = shortcut
self.module_list = nn.ModuleList()
for i in range(nblocks):
resblock_one = nn.ModuleList()
resblock_one.append(Conv_Bn_Activation(ch, ch, 1, 1, 'mish'))
resblock_one.append(Conv_Bn_Activation(ch, ch, 3, 1, 'mish'))
self.module_list.append(resblock_one)
def forward(self, x):
for module in self.module_list:
h = x
for res in module:
h = res(h)
x = x + h if self.shortcut else h
return x
class DownSample1(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = Conv_Bn_Activation(3, 32, 3, 1, 'mish')
self.conv2 = Conv_Bn_Activation(32, 64, 3, 2, 'mish')
self.conv3 = Conv_Bn_Activation(64, 64, 1, 1, 'mish')
# [route]
# layers = -2
self.conv4 = Conv_Bn_Activation(64, 64, 1, 1, 'mish')
self.conv5 = Conv_Bn_Activation(64, 32, 1, 1, 'mish')
self.conv6 = Conv_Bn_Activation(32, 64, 3, 1, 'mish')
# [shortcut]
# from=-3
# activation = linear
self.conv7 = Conv_Bn_Activation(64, 64, 1, 1, 'mish')
# [route]
# layers = -1, -7
self.conv8 = Conv_Bn_Activation(128, 64, 1, 1, 'mish')
def forward(self, input):
x1 = self.conv1(input)
x2 = self.conv2(x1)
x3 = self.conv3(x2)
# route -2
x4 = self.conv4(x2)
x5 = self.conv5(x4)
x6 = self.conv6(x5)
# shortcut -3
x6 = x6 + x4
x7 = self.conv7(x6)
# [route]
# layers = -1, -7
x7 = torch.cat([x7, x3], dim=1)
x8 = self.conv8(x7)
return x8
class DownSample2(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = Conv_Bn_Activation(64, 128, 3, 2, 'mish')
self.conv2 = Conv_Bn_Activation(128, 64, 1, 1, 'mish')
# r -2
self.conv3 = Conv_Bn_Activation(128, 64, 1, 1, 'mish')
self.resblock = ResBlock(ch=64, nblocks=2)
# s -3
self.conv4 = Conv_Bn_Activation(64, 64, 1, 1, 'mish')
# r -1 -10
self.conv5 = Conv_Bn_Activation(128, 128, 1, 1, 'mish')
def forward(self, input):
x1 = self.conv1(input)
x2 = self.conv2(x1)
x3 = self.conv3(x1)
r = self.resblock(x3)
x4 = self.conv4(r)
x4 = torch.cat([x4, x2], dim=1)
x5 = self.conv5(x4)
return x5
class DownSample3(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = Conv_Bn_Activation(128, 256, 3, 2, 'mish')
self.conv2 = Conv_Bn_Activation(256, 128, 1, 1, 'mish')
self.conv3 = Conv_Bn_Activation(256, 128, 1, 1, 'mish')
self.resblock = ResBlock(ch=128, nblocks=8)
self.conv4 = Conv_Bn_Activation(128, 128, 1, 1, 'mish')
self.conv5 = Conv_Bn_Activation(256, 256, 1, 1, 'mish')
def forward(self, input):
x1 = self.conv1(input)
x2 = self.conv2(x1)
x3 = self.conv3(x1)
r = self.resblock(x3)
x4 = self.conv4(r)
x4 = torch.cat([x4, x2], dim=1)
x5 = self.conv5(x4)
return x5
class DownSample4(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = Conv_Bn_Activation(256, 512, 3, 2, 'mish')
self.conv2 = Conv_Bn_Activation(512, 256, 1, 1, 'mish')
self.conv3 = Conv_Bn_Activation(512, 256, 1, 1, 'mish')
self.resblock = ResBlock(ch=256, nblocks=8)
self.conv4 = Conv_Bn_Activation(256, 256, 1, 1, 'mish')
self.conv5 = Conv_Bn_Activation(512, 512, 1, 1, 'mish')
def forward(self, input):
x1 = self.conv1(input)
x2 = self.conv2(x1)
x3 = self.conv3(x1)
r = self.resblock(x3)
x4 = self.conv4(r)
x4 = torch.cat([x4, x2], dim=1)
x5 = self.conv5(x4)
return x5
class DownSample5(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = Conv_Bn_Activation(512, 1024, 3, 2, 'mish')
self.conv2 = Conv_Bn_Activation(1024, 512, 1, 1, 'mish')
self.conv3 = Conv_Bn_Activation(1024, 512, 1, 1, 'mish')
self.resblock = ResBlock(ch=512, nblocks=4)
self.conv4 = Conv_Bn_Activation(512, 512, 1, 1, 'mish')
self.conv5 = Conv_Bn_Activation(1024, 1024, 1, 1, 'mish')
def forward(self, input):
x1 = self.conv1(input)
x2 = self.conv2(x1)
x3 = self.conv3(x1)
r = self.resblock(x3)
x4 = self.conv4(r)
x4 = torch.cat([x4, x2], dim=1)
x5 = self.conv5(x4)
return x5
class Neck(nn.Module):
def __init__(self, inference=False):
super().__init__()
self.inference = inference
self.conv1 = Conv_Bn_Activation(1024, 512, 1, 1, 'leaky')
self.conv2 = Conv_Bn_Activation(512, 1024, 3, 1, 'leaky')
self.conv3 = Conv_Bn_Activation(1024, 512, 1, 1, 'leaky')
# SPP
self.maxpool1 = nn.MaxPool2d(kernel_size=5, stride=1, padding=5 // 2)
self.maxpool2 = nn.MaxPool2d(kernel_size=9, stride=1, padding=9 // 2)
self.maxpool3 = nn.MaxPool2d(kernel_size=13, stride=1, padding=13 // 2)
# R -1 -3 -5 -6
# SPP
self.conv4 = Conv_Bn_Activation(2048, 512, 1, 1, 'leaky')
self.conv5 = Conv_Bn_Activation(512, 1024, 3, 1, 'leaky')
self.conv6 = Conv_Bn_Activation(1024, 512, 1, 1, 'leaky')
self.conv7 = Conv_Bn_Activation(512, 256, 1, 1, 'leaky')
# UP
self.upsample1 = Upsample()
# R 85
self.conv8 = Conv_Bn_Activation(512, 256, 1, 1, 'leaky')
# R -1 -3
self.conv9 = Conv_Bn_Activation(512, 256, 1, 1, 'leaky')
self.conv10 = Conv_Bn_Activation(256, 512, 3, 1, 'leaky')
self.conv11 = Conv_Bn_Activation(512, 256, 1, 1, 'leaky')
self.conv12 = Conv_Bn_Activation(256, 512, 3, 1, 'leaky')
self.conv13 = Conv_Bn_Activation(512, 256, 1, 1, 'leaky')
self.conv14 = Conv_Bn_Activation(256, 128, 1, 1, 'leaky')
# UP
self.upsample2 = Upsample()
# R 54
self.conv15 = Conv_Bn_Activation(256, 128, 1, 1, 'leaky')
# R -1 -3
self.conv16 = Conv_Bn_Activation(256, 128, 1, 1, 'leaky')
self.conv17 = Conv_Bn_Activation(128, 256, 3, 1, 'leaky')
self.conv18 = Conv_Bn_Activation(256, 128, 1, 1, 'leaky')
self.conv19 = Conv_Bn_Activation(128, 256, 3, 1, 'leaky')
self.conv20 = Conv_Bn_Activation(256, 128, 1, 1, 'leaky')
def forward(self, input, downsample4, downsample3, inference=False):
x1 = self.conv1(input)
x2 = self.conv2(x1)
x3 = self.conv3(x2)
# SPP
m1 = self.maxpool1(x3)
m2 = self.maxpool2(x3)
m3 = self.maxpool3(x3)
spp = torch.cat([m3, m2, m1, x3], dim=1)
# SPP end
x4 = self.conv4(spp)
x5 = self.conv5(x4)
x6 = self.conv6(x5)
x7 = self.conv7(x6)
# UP
up = self.upsample1(x7, downsample4.size(), self.inference)
# R 85
x8 = self.conv8(downsample4)
# R -1 -3
x8 = torch.cat([x8, up], dim=1)
x9 = self.conv9(x8)
x10 = self.conv10(x9)
x11 = self.conv11(x10)
x12 = self.conv12(x11)
x13 = self.conv13(x12)
x14 = self.conv14(x13)
# UP
up = self.upsample2(x14, downsample3.size(), self.inference)
# R 54
x15 = self.conv15(downsample3)
# R -1 -3
x15 = torch.cat([x15, up], dim=1)
x16 = self.conv16(x15)
x17 = self.conv17(x16)
x18 = self.conv18(x17)
x19 = self.conv19(x18)
x20 = self.conv20(x19)
return x20, x13, x6
class Yolov4Head(nn.Module):
def __init__(self, output_ch, n_classes, inference=False):
super().__init__()
self.inference = inference
self.conv1 = Conv_Bn_Activation(128, 256, 3, 1, 'leaky')
self.conv2 = Conv_Bn_Activation(256, output_ch, 1, 1, 'linear', bn=False, bias=True)
self.yolo1 = YoloLayer(
anchor_mask=[0, 1, 2], num_classes=n_classes,
anchors=[12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401],
num_anchors=9, stride=8)
# R -4
self.conv3 = Conv_Bn_Activation(128, 256, 3, 2, 'leaky')
# R -1 -16
self.conv4 = Conv_Bn_Activation(512, 256, 1, 1, 'leaky')
self.conv5 = Conv_Bn_Activation(256, 512, 3, 1, 'leaky')
self.conv6 = Conv_Bn_Activation(512, 256, 1, 1, 'leaky')
self.conv7 = Conv_Bn_Activation(256, 512, 3, 1, 'leaky')
self.conv8 = Conv_Bn_Activation(512, 256, 1, 1, 'leaky')
self.conv9 = Conv_Bn_Activation(256, 512, 3, 1, 'leaky')
self.conv10 = Conv_Bn_Activation(512, output_ch, 1, 1, 'linear', bn=False, bias=True)
self.yolo2 = YoloLayer(
anchor_mask=[3, 4, 5], num_classes=n_classes,
anchors=[12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401],
num_anchors=9, stride=16)
# R -4
self.conv11 = Conv_Bn_Activation(256, 512, 3, 2, 'leaky')
# R -1 -37
self.conv12 = Conv_Bn_Activation(1024, 512, 1, 1, 'leaky')
self.conv13 = Conv_Bn_Activation(512, 1024, 3, 1, 'leaky')
self.conv14 = Conv_Bn_Activation(1024, 512, 1, 1, 'leaky')
self.conv15 = Conv_Bn_Activation(512, 1024, 3, 1, 'leaky')
self.conv16 = Conv_Bn_Activation(1024, 512, 1, 1, 'leaky')
self.conv17 = Conv_Bn_Activation(512, 1024, 3, 1, 'leaky')
self.conv18 = Conv_Bn_Activation(1024, output_ch, 1, 1, 'linear', bn=False, bias=True)
self.yolo3 = YoloLayer(
anchor_mask=[6, 7, 8], num_classes=n_classes,
anchors=[12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401],
num_anchors=9, stride=32)
def forward(self, input1, input2, input3):
x1 = self.conv1(input1)
x2 = self.conv2(x1)
x3 = self.conv3(input1)
# R -1 -16
x3 = torch.cat([x3, input2], dim=1)
x4 = self.conv4(x3)
x5 = self.conv5(x4)
x6 = self.conv6(x5)
x7 = self.conv7(x6)
x8 = self.conv8(x7)
x9 = self.conv9(x8)
x10 = self.conv10(x9)
# R -4
x11 = self.conv11(x8)
# R -1 -37
x11 = torch.cat([x11, input3], dim=1)
x12 = self.conv12(x11)
x13 = self.conv13(x12)
x14 = self.conv14(x13)
x15 = self.conv15(x14)
x16 = self.conv16(x15)
x17 = self.conv17(x16)
x18 = self.conv18(x17)
if self.inference:
y1 = self.yolo1(x2)
y2 = self.yolo2(x10)
y3 = self.yolo3(x18)
return get_region_boxes([y1, y2, y3])
else:
return [x2, x10, x18]
class Yolov4(nn.Module):
def __init__(self, yolov4conv137weight=None, n_classes=80, inference=False):
super().__init__()
output_ch = (4 + 1 + n_classes) * 3
# backbone
self.down1 = DownSample1()
self.down2 = DownSample2()
self.down3 = DownSample3()
self.down4 = DownSample4()
self.down5 = DownSample5()
# neck
self.neek = Neck(inference)
# yolov4conv137
if yolov4conv137weight:
_model = nn.Sequential(self.down1, self.down2, self.down3, self.down4, self.down5, self.neek)
pretrained_dict = torch.load(yolov4conv137weight)
model_dict = _model.state_dict()
# 1. filter out unnecessary keys
pretrained_dict = {k1: v for (k, v), k1 in zip(pretrained_dict.items(), model_dict)}
# 2. overwrite entries in the existing state dict
model_dict.update(pretrained_dict)
_model.load_state_dict(model_dict)
# head
self.head = Yolov4Head(output_ch, n_classes, inference)
def forward(self, input):
d1 = self.down1(input)
d2 = self.down2(d1)
d3 = self.down3(d2)
d4 = self.down4(d3)
d5 = self.down5(d4)
x20, x13, x6 = self.neek(d5, d4, d3)
output = self.head(x20, x13, x6)
return output

@ -0,0 +1,104 @@
import sys
import os
import time
import math
import torch
import numpy as np
from torch.autograd import Variable
import itertools
import struct # get_image_size
import imghdr # get_image_size
from yolo_tool import utils
def bbox_ious(boxes1, boxes2, x1y1x2y2=True):
if x1y1x2y2:
mx = torch.min(boxes1[0], boxes2[0])
Mx = torch.max(boxes1[2], boxes2[2])
my = torch.min(boxes1[1], boxes2[1])
My = torch.max(boxes1[3], boxes2[3])
w1 = boxes1[2] - boxes1[0]
h1 = boxes1[3] - boxes1[1]
w2 = boxes2[2] - boxes2[0]
h2 = boxes2[3] - boxes2[1]
else:
mx = torch.min(boxes1[0] - boxes1[2] / 2.0, boxes2[0] - boxes2[2] / 2.0)
Mx = torch.max(boxes1[0] + boxes1[2] / 2.0, boxes2[0] + boxes2[2] / 2.0)
my = torch.min(boxes1[1] - boxes1[3] / 2.0, boxes2[1] - boxes2[3] / 2.0)
My = torch.max(boxes1[1] + boxes1[3] / 2.0, boxes2[1] + boxes2[3] / 2.0)
w1 = boxes1[2]
h1 = boxes1[3]
w2 = boxes2[2]
h2 = boxes2[3]
uw = Mx - mx
uh = My - my
cw = w1 + w2 - uw
ch = h1 + h2 - uh
mask = ((cw <= 0) + (ch <= 0) > 0)
area1 = w1 * h1
area2 = w2 * h2
carea = cw * ch
carea[mask] = 0
uarea = area1 + area2 - carea
return carea / uarea
def get_region_boxes(boxes_and_confs):
# print('Getting boxes from boxes and confs ...')
boxes_list = []
confs_list = []
for item in boxes_and_confs:
boxes_list.append(item[0])
confs_list.append(item[1])
# boxes: [batch, num1 + num2 + num3, 1, 4]
# confs: [batch, num1 + num2 + num3, num_classes]
boxes = torch.cat(boxes_list, dim=1)
confs = torch.cat(confs_list, dim=1)
return [boxes, confs]
def convert2cpu(gpu_matrix):
return torch.FloatTensor(gpu_matrix.size()).copy_(gpu_matrix)
def convert2cpu_long(gpu_matrix):
return torch.LongTensor(gpu_matrix.size()).copy_(gpu_matrix)
def do_detect(model, img, conf_thresh, nms_thresh, use_cuda=1):
model.eval()
t0 = time.time()
if type(img) == np.ndarray and len(img.shape) == 3: # cv2 image
img = torch.from_numpy(img.transpose(2, 0, 1)).float().div(255.0).unsqueeze(0)
elif type(img) == np.ndarray and len(img.shape) == 4:
img = torch.from_numpy(img.transpose(0, 3, 1, 2)).float().div(255.0)
else:
print("unknow image type")
exit(-1)
if use_cuda:
img = img.cuda()
img = torch.autograd.Variable(img)
t1 = time.time()
output = model(img)
t2 = time.time()
#
# print('-----------------------------------')
# print(' Preprocess : %f' % (t1 - t0))
# print(' Model Inference : %f' % (t2 - t1))
# print('-----------------------------------')
return utils.post_processing(img, conf_thresh, nms_thresh, output)

@ -0,0 +1,248 @@
import sys
import os
import time
import math
import numpy as np
import itertools
import struct # get_image_size
import imghdr # get_image_size
def sigmoid(x):
return 1.0 / (np.exp(-x) + 1.)
def softmax(x):
x = np.exp(x - np.expand_dims(np.max(x, axis=1), axis=1))
x = x / np.expand_dims(x.sum(axis=1), axis=1)
return x
def bbox_iou(box1, box2, x1y1x2y2=True):
# print('iou box1:', box1)
# print('iou box2:', box2)
if x1y1x2y2:
mx = min(box1[0], box2[0])
Mx = max(box1[2], box2[2])
my = min(box1[1], box2[1])
My = max(box1[3], box2[3])
w1 = box1[2] - box1[0]
h1 = box1[3] - box1[1]
w2 = box2[2] - box2[0]
h2 = box2[3] - box2[1]
else:
w1 = box1[2]
h1 = box1[3]
w2 = box2[2]
h2 = box2[3]
mx = min(box1[0], box2[0])
Mx = max(box1[0] + w1, box2[0] + w2)
my = min(box1[1], box2[1])
My = max(box1[1] + h1, box2[1] + h2)
uw = Mx - mx
uh = My - my
cw = w1 + w2 - uw
ch = h1 + h2 - uh
carea = 0
if cw <= 0 or ch <= 0:
return 0.0
area1 = w1 * h1
area2 = w2 * h2
carea = cw * ch
uarea = area1 + area2 - carea
return carea / uarea
def nms_cpu(boxes, confs, nms_thresh=0.5, min_mode=False):
# print(boxes.shape)
x1 = boxes[:, 0]
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]
areas = (x2 - x1) * (y2 - y1)
order = confs.argsort()[::-1]
keep = []
while order.size > 0:
idx_self = order[0]
idx_other = order[1:]
keep.append(idx_self)
xx1 = np.maximum(x1[idx_self], x1[idx_other])
yy1 = np.maximum(y1[idx_self], y1[idx_other])
xx2 = np.minimum(x2[idx_self], x2[idx_other])
yy2 = np.minimum(y2[idx_self], y2[idx_other])
w = np.maximum(0.0, xx2 - xx1)
h = np.maximum(0.0, yy2 - yy1)
inter = w * h
if min_mode:
over = inter / np.minimum(areas[order[0]], areas[order[1:]])
else:
over = inter / (areas[order[0]] + areas[order[1:]] - inter)
inds = np.where(over <= nms_thresh)[0]
order = order[inds + 1]
return np.array(keep)
def plot_boxes_cv2(img, boxes, scale_width, scale_height, savename=None, class_names=None, color=None):
import cv2
img = np.copy(img)
colors = np.array([[1, 0, 1], [0, 0, 1], [0, 1, 1], [0, 1, 0], [1, 1, 0], [1, 0, 0]], dtype=np.float32)
def get_color(c, x, max_val):
ratio = float(x) / max_val * 5
i = int(math.floor(ratio))
j = int(math.ceil(ratio))
ratio = ratio - i
r = (1 - ratio) * colors[i][c] + ratio * colors[j][c]
return int(r * 255)
width = img.shape[1]
height = img.shape[0]
for i in range(len(boxes)):
box = boxes[i]
x1 = int(box[0] * width * scale_width)
y1 = int(box[1] * height * scale_height)
x2 = int(box[2] * width * scale_width)
y2 = int(box[3] * height * scale_height)
if color:
rgb = color
else:
rgb = (255, 0, 0)
if len(box) >= 7 and class_names:
cls_conf = box[5]
cls_id = box[6]
# print('%s: %f' % (class_names[cls_id], cls_conf))
classes = len(class_names)
offset = cls_id * 123457 % classes
red = get_color(2, offset, classes)
green = get_color(1, offset, classes)
blue = get_color(0, offset, classes)
if color is None:
rgb = (red, green, blue)
img = cv2.putText(img, class_names[cls_id], (x1, y1), cv2.FONT_HERSHEY_SIMPLEX, 1.2, rgb, 1)
img = cv2.rectangle(img, (x1, y1), (x2, y2), rgb, 1)
if savename:
print("save plot results to %s" % savename)
cv2.imwrite(savename, img)
return img
def get_objects(img, boxes, scale_width, scale_height, class_names=None):
objects = []
width = img.shape[1]
height = img.shape[0]
for i in range(len(boxes)):
box = boxes[i]
x1 = int(box[0] * width * scale_width)
y1 = int(box[1] * height * scale_height)
x2 = int(box[2] * width * scale_width)
y2 = int(box[3] * height * scale_height)
cls_conf = box[5]
cls_id = box[6]
cls = class_names[cls_id]
objects.append((x1, y1, x2, y2, cls, cls_conf))
return objects
def read_truths(lab_path):
if not os.path.exists(lab_path):
return np.array([])
if os.path.getsize(lab_path):
truths = np.loadtxt(lab_path)
truths = truths.reshape(truths.size / 5, 5) # to avoid single truth problem
return truths
else:
return np.array([])
def load_class_names(namesfile):
class_names = []
with open(namesfile, 'r') as fp:
lines = fp.readlines()
for line in lines:
line = line.rstrip()
class_names.append(line)
return class_names
def post_processing(img, conf_thresh, nms_thresh, output):
# anchors = [12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401]
# num_anchors = 9
# anchor_masks = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
# strides = [8, 16, 32]
# anchor_step = len(anchors) // num_anchors
# [batch, num, 1, 4]
box_array = output[0]
# [batch, num, num_classes]
confs = output[1]
t1 = time.time()
if type(box_array).__name__ != 'ndarray':
box_array = box_array.cpu().detach().numpy()
confs = confs.cpu().detach().numpy()
num_classes = confs.shape[2]
# [batch, num, 4]
box_array = box_array[:, :, 0]
# [batch, num, num_classes] --> [batch, num]
max_conf = np.max(confs, axis=2)
max_id = np.argmax(confs, axis=2)
t2 = time.time()
bboxes_batch = []
for i in range(box_array.shape[0]):
argwhere = max_conf[i] > conf_thresh
l_box_array = box_array[i, argwhere, :]
l_max_conf = max_conf[i, argwhere]
l_max_id = max_id[i, argwhere]
bboxes = []
# nms for each class
for j in range(num_classes):
cls_argwhere = l_max_id == j
ll_box_array = l_box_array[cls_argwhere, :]
ll_max_conf = l_max_conf[cls_argwhere]
ll_max_id = l_max_id[cls_argwhere]
keep = nms_cpu(ll_box_array, ll_max_conf, nms_thresh)
if (keep.size > 0):
ll_box_array = ll_box_array[keep, :]
ll_max_conf = ll_max_conf[keep]
ll_max_id = ll_max_id[keep]
for k in range(ll_box_array.shape[0]):
bboxes.append(
[ll_box_array[k, 0], ll_box_array[k, 1], ll_box_array[k, 2], ll_box_array[k, 3], ll_max_conf[k],
ll_max_conf[k], ll_max_id[k]])
bboxes_batch.append(bboxes)
t3 = time.time()
# print('-----------------------------------')
# print(' max and argmax : %f' % (t2 - t1))
# print(' nms : %f' % (t3 - t2))
# print('Post processing total : %f' % (t3 - t1))
# print('-----------------------------------')
return bboxes_batch

@ -0,0 +1,322 @@
import torch.nn as nn
import torch.nn.functional as F
from yolo_tool.torch_utils import *
def yolo_forward(output, conf_thresh, num_classes, anchors, num_anchors, scale_x_y, only_objectness=1,
validation=False):
# Output would be invalid if it does not satisfy this assert
# assert (output.size(1) == (5 + num_classes) * num_anchors)
# print(output.size())
# Slice the second dimension (channel) of output into:
# [ 2, 2, 1, num_classes, 2, 2, 1, num_classes, 2, 2, 1, num_classes ]
# And then into
# bxy = [ 6 ] bwh = [ 6 ] det_conf = [ 3 ] cls_conf = [ num_classes * 3 ]
batch = output.size(0)
H = output.size(2)
W = output.size(3)
bxy_list = []
bwh_list = []
det_confs_list = []
cls_confs_list = []
for i in range(num_anchors):
begin = i * (5 + num_classes)
end = (i + 1) * (5 + num_classes)
bxy_list.append(output[:, begin : begin + 2])
bwh_list.append(output[:, begin + 2 : begin + 4])
det_confs_list.append(output[:, begin + 4 : begin + 5])
cls_confs_list.append(output[:, begin + 5 : end])
# Shape: [batch, num_anchors * 2, H, W]
bxy = torch.cat(bxy_list, dim=1)
# Shape: [batch, num_anchors * 2, H, W]
bwh = torch.cat(bwh_list, dim=1)
# Shape: [batch, num_anchors, H, W]
det_confs = torch.cat(det_confs_list, dim=1)
# Shape: [batch, num_anchors * H * W]
det_confs = det_confs.view(batch, num_anchors * H * W)
# Shape: [batch, num_anchors * num_classes, H, W]
cls_confs = torch.cat(cls_confs_list, dim=1)
# Shape: [batch, num_anchors, num_classes, H * W]
cls_confs = cls_confs.view(batch, num_anchors, num_classes, H * W)
# Shape: [batch, num_anchors, num_classes, H * W] --> [batch, num_anchors * H * W, num_classes]
cls_confs = cls_confs.permute(0, 1, 3, 2).reshape(batch, num_anchors * H * W, num_classes)
# Apply sigmoid(), exp() and softmax() to slices
#
bxy = torch.sigmoid(bxy) * scale_x_y - 0.5 * (scale_x_y - 1)
bwh = torch.exp(bwh)
det_confs = torch.sigmoid(det_confs)
cls_confs = torch.sigmoid(cls_confs)
# Prepare C-x, C-y, P-w, P-h (None of them are torch related)
grid_x = np.expand_dims(np.expand_dims(np.expand_dims(np.linspace(0, W - 1, W), axis=0).repeat(H, 0), axis=0), axis=0)
grid_y = np.expand_dims(np.expand_dims(np.expand_dims(np.linspace(0, H - 1, H), axis=1).repeat(W, 1), axis=0), axis=0)
# grid_x = torch.linspace(0, W - 1, W).reshape(1, 1, 1, W).repeat(1, 1, H, 1)
# grid_y = torch.linspace(0, H - 1, H).reshape(1, 1, H, 1).repeat(1, 1, 1, W)
anchor_w = []
anchor_h = []
for i in range(num_anchors):
anchor_w.append(anchors[i * 2])
anchor_h.append(anchors[i * 2 + 1])
device = None
cuda_check = output.is_cuda
if cuda_check:
device = output.get_device()
bx_list = []
by_list = []
bw_list = []
bh_list = []
# Apply C-x, C-y, P-w, P-h
for i in range(num_anchors):
ii = i * 2
# Shape: [batch, 1, H, W]
bx = bxy[:, ii : ii + 1] + torch.tensor(grid_x, device=device, dtype=torch.float32) # grid_x.to(device=device, dtype=torch.float32)
# Shape: [batch, 1, H, W]
by = bxy[:, ii + 1 : ii + 2] + torch.tensor(grid_y, device=device, dtype=torch.float32) # grid_y.to(device=device, dtype=torch.float32)
# Shape: [batch, 1, H, W]
bw = bwh[:, ii : ii + 1] * anchor_w[i]
# Shape: [batch, 1, H, W]
bh = bwh[:, ii + 1 : ii + 2] * anchor_h[i]
bx_list.append(bx)
by_list.append(by)
bw_list.append(bw)
bh_list.append(bh)
########################################
# Figure out bboxes from slices #
########################################
# Shape: [batch, num_anchors, H, W]
bx = torch.cat(bx_list, dim=1)
# Shape: [batch, num_anchors, H, W]
by = torch.cat(by_list, dim=1)
# Shape: [batch, num_anchors, H, W]
bw = torch.cat(bw_list, dim=1)
# Shape: [batch, num_anchors, H, W]
bh = torch.cat(bh_list, dim=1)
# Shape: [batch, 2 * num_anchors, H, W]
bx_bw = torch.cat((bx, bw), dim=1)
# Shape: [batch, 2 * num_anchors, H, W]
by_bh = torch.cat((by, bh), dim=1)
# normalize coordinates to [0, 1]
bx_bw /= W
by_bh /= H
# Shape: [batch, num_anchors * H * W, 1]
bx = bx_bw[:, :num_anchors].view(batch, num_anchors * H * W, 1)
by = by_bh[:, :num_anchors].view(batch, num_anchors * H * W, 1)
bw = bx_bw[:, num_anchors:].view(batch, num_anchors * H * W, 1)
bh = by_bh[:, num_anchors:].view(batch, num_anchors * H * W, 1)
bx1 = bx - bw * 0.5
by1 = by - bh * 0.5
bx2 = bx1 + bw
by2 = by1 + bh
# Shape: [batch, num_anchors * h * w, 4] -> [batch, num_anchors * h * w, 1, 4]
boxes = torch.cat((bx1, by1, bx2, by2), dim=2).view(batch, num_anchors * H * W, 1, 4)
# boxes = boxes.repeat(1, 1, num_classes, 1)
# boxes: [batch, num_anchors * H * W, 1, 4]
# cls_confs: [batch, num_anchors * H * W, num_classes]
# det_confs: [batch, num_anchors * H * W]
det_confs = det_confs.view(batch, num_anchors * H * W, 1)
confs = cls_confs * det_confs
# boxes: [batch, num_anchors * H * W, 1, 4]
# confs: [batch, num_anchors * H * W, num_classes]
return boxes, confs
def yolo_forward_dynamic(output, conf_thresh, num_classes, anchors, num_anchors, scale_x_y, only_objectness=1,
validation=False):
# Output would be invalid if it does not satisfy this assert
# assert (output.size(1) == (5 + num_classes) * num_anchors)
# print(output.size())
# Slice the second dimension (channel) of output into:
# [ 2, 2, 1, num_classes, 2, 2, 1, num_classes, 2, 2, 1, num_classes ]
# And then into
# bxy = [ 6 ] bwh = [ 6 ] det_conf = [ 3 ] cls_conf = [ num_classes * 3 ]
# batch = output.size(0)
# H = output.size(2)
# W = output.size(3)
bxy_list = []
bwh_list = []
det_confs_list = []
cls_confs_list = []
for i in range(num_anchors):
begin = i * (5 + num_classes)
end = (i + 1) * (5 + num_classes)
bxy_list.append(output[:, begin : begin + 2])
bwh_list.append(output[:, begin + 2 : begin + 4])
det_confs_list.append(output[:, begin + 4 : begin + 5])
cls_confs_list.append(output[:, begin + 5 : end])
# Shape: [batch, num_anchors * 2, H, W]
bxy = torch.cat(bxy_list, dim=1)
# Shape: [batch, num_anchors * 2, H, W]
bwh = torch.cat(bwh_list, dim=1)
# Shape: [batch, num_anchors, H, W]
det_confs = torch.cat(det_confs_list, dim=1)
# Shape: [batch, num_anchors * H * W]
det_confs = det_confs.view(output.size(0), num_anchors * output.size(2) * output.size(3))
# Shape: [batch, num_anchors * num_classes, H, W]
cls_confs = torch.cat(cls_confs_list, dim=1)
# Shape: [batch, num_anchors, num_classes, H * W]
cls_confs = cls_confs.view(output.size(0), num_anchors, num_classes, output.size(2) * output.size(3))
# Shape: [batch, num_anchors, num_classes, H * W] --> [batch, num_anchors * H * W, num_classes]
cls_confs = cls_confs.permute(0, 1, 3, 2).reshape(output.size(0), num_anchors * output.size(2) * output.size(3), num_classes)
# Apply sigmoid(), exp() and softmax() to slices
#
bxy = torch.sigmoid(bxy) * scale_x_y - 0.5 * (scale_x_y - 1)
bwh = torch.exp(bwh)
det_confs = torch.sigmoid(det_confs)
cls_confs = torch.sigmoid(cls_confs)
# Prepare C-x, C-y, P-w, P-h (None of them are torch related)
grid_x = np.expand_dims(np.expand_dims(np.expand_dims(np.linspace(0, output.size(3) - 1, output.size(3)), axis=0).repeat(output.size(2), 0), axis=0), axis=0)
grid_y = np.expand_dims(np.expand_dims(np.expand_dims(np.linspace(0, output.size(2) - 1, output.size(2)), axis=1).repeat(output.size(3), 1), axis=0), axis=0)
# grid_x = torch.linspace(0, W - 1, W).reshape(1, 1, 1, W).repeat(1, 1, H, 1)
# grid_y = torch.linspace(0, H - 1, H).reshape(1, 1, H, 1).repeat(1, 1, 1, W)
anchor_w = []
anchor_h = []
for i in range(num_anchors):
anchor_w.append(anchors[i * 2])
anchor_h.append(anchors[i * 2 + 1])
device = None
cuda_check = output.is_cuda
if cuda_check:
device = output.get_device()
bx_list = []
by_list = []
bw_list = []
bh_list = []
# Apply C-x, C-y, P-w, P-h
for i in range(num_anchors):
ii = i * 2
# Shape: [batch, 1, H, W]
bx = bxy[:, ii : ii + 1] + torch.tensor(grid_x, device=device, dtype=torch.float32) # grid_x.to(device=device, dtype=torch.float32)
# Shape: [batch, 1, H, W]
by = bxy[:, ii + 1 : ii + 2] + torch.tensor(grid_y, device=device, dtype=torch.float32) # grid_y.to(device=device, dtype=torch.float32)
# Shape: [batch, 1, H, W]
bw = bwh[:, ii : ii + 1] * anchor_w[i]
# Shape: [batch, 1, H, W]
bh = bwh[:, ii + 1 : ii + 2] * anchor_h[i]
bx_list.append(bx)
by_list.append(by)
bw_list.append(bw)
bh_list.append(bh)
########################################
# Figure out bboxes from slices #
########################################
# Shape: [batch, num_anchors, H, W]
bx = torch.cat(bx_list, dim=1)
# Shape: [batch, num_anchors, H, W]
by = torch.cat(by_list, dim=1)
# Shape: [batch, num_anchors, H, W]
bw = torch.cat(bw_list, dim=1)
# Shape: [batch, num_anchors, H, W]
bh = torch.cat(bh_list, dim=1)
# Shape: [batch, 2 * num_anchors, H, W]
bx_bw = torch.cat((bx, bw), dim=1)
# Shape: [batch, 2 * num_anchors, H, W]
by_bh = torch.cat((by, bh), dim=1)
# normalize coordinates to [0, 1]
bx_bw /= output.size(3)
by_bh /= output.size(2)
# Shape: [batch, num_anchors * H * W, 1]
bx = bx_bw[:, :num_anchors].view(output.size(0), num_anchors * output.size(2) * output.size(3), 1)
by = by_bh[:, :num_anchors].view(output.size(0), num_anchors * output.size(2) * output.size(3), 1)
bw = bx_bw[:, num_anchors:].view(output.size(0), num_anchors * output.size(2) * output.size(3), 1)
bh = by_bh[:, num_anchors:].view(output.size(0), num_anchors * output.size(2) * output.size(3), 1)
bx1 = bx - bw * 0.5
by1 = by - bh * 0.5
bx2 = bx1 + bw
by2 = by1 + bh
# Shape: [batch, num_anchors * h * w, 4] -> [batch, num_anchors * h * w, 1, 4]
boxes = torch.cat((bx1, by1, bx2, by2), dim=2).view(output.size(0), num_anchors * output.size(2) * output.size(3), 1, 4)
# boxes = boxes.repeat(1, 1, num_classes, 1)
# boxes: [batch, num_anchors * H * W, 1, 4]
# cls_confs: [batch, num_anchors * H * W, num_classes]
# det_confs: [batch, num_anchors * H * W]
det_confs = det_confs.view(output.size(0), num_anchors * output.size(2) * output.size(3), 1)
confs = cls_confs * det_confs
# boxes: [batch, num_anchors * H * W, 1, 4]
# confs: [batch, num_anchors * H * W, num_classes]
return boxes, confs
class YoloLayer(nn.Module):
''' Yolo layer
model_out: while inference,is post-processing inside or outside the model
true:outside
'''
def __init__(self, anchor_mask=[], num_classes=0, anchors=[], num_anchors=1, stride=32, model_out=False):
super(YoloLayer, self).__init__()
self.anchor_mask = anchor_mask
self.num_classes = num_classes
self.anchors = anchors
self.num_anchors = num_anchors
self.anchor_step = len(anchors) // num_anchors
self.coord_scale = 1
self.noobject_scale = 1
self.object_scale = 5
self.class_scale = 1
self.thresh = 0.6
self.stride = stride
self.seen = 0
self.scale_x_y = 1
self.model_out = model_out
def forward(self, output, target=None):
if self.training:
return output
masked_anchors = []
for m in self.anchor_mask:
masked_anchors += self.anchors[m * self.anchor_step:(m + 1) * self.anchor_step]
masked_anchors = [anchor / self.stride for anchor in masked_anchors]
return yolo_forward_dynamic(output, self.thresh, self.num_classes, masked_anchors, len(self.anchor_mask),scale_x_y=self.scale_x_y)

@ -12,16 +12,26 @@ BATCH
echo '**** GIMP-ML Setup started ****'
if python --version 2>&1 | grep -q '^Python 3\.'; then #
echo 'Python 3 found.' #
sudo apt-get install python3-distutils #
sudo apt install python3-testresources #
wget https://bootstrap.pypa.io/pip/get-pip.py #
python GIMP-ML/get-pip.py #
rm -rf get-pip* #
python -m pip install virtualenv
python -m virtualenv gimpenv3 #
source gimpenv3/bin/activate #
python -m pip3 install torch torchvision -f https://download.pytorch.org/whl/lts/1.8/torch_lts.html #
python -m pip install torch torchvision -f https://download.pytorch.org/whl/lts/1.8/torch_lts.html #
python -m pip install GIMP-ML/.
python -c "import gimpml; gimpml.setup_python_weights()" #
chmod -R 777 gimpenv3/lib/ #
deactivate #
elif python3 --version 2>&1 | grep -q '^Python 3\.'; then #
echo 'Python 3 found.' #
sudo apt-get install python3-distutils #
sudo apt install python3-testresources #
wget https://bootstrap.pypa.io/pip/get-pip.py #
python3 get-pip.py #
rm -rf get-pip* #
python3 -m pip install virtualenv
python3 -m virtualenv gimpenv3 #
source gimpenv3/bin/activate #

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

Binary file not shown.

After

Width:  |  Height:  |  Size: 597 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 322 KiB

After

Width:  |  Height:  |  Size: 322 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.5 MiB

After

Width:  |  Height:  |  Size: 5.6 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 597 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 337 KiB

After

Width:  |  Height:  |  Size: 334 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 934 KiB

@ -4,6 +4,9 @@ import gimpml
image = cv2.imread("sampleinput/img.png")
alpha = cv2.imread("sampleinput/alpha.png")
out = gimpml.edge(image)
cv2.imwrite("output/tmp-edge.jpg", out)
# out = gimpml.kmeans(image)
# cv2.imwrite("output/tmp-kmeans.jpg", out)
# #

Loading…
Cancel
Save