mirror of
https://github.com/kritiksoman/GIMP-ML
synced 2024-11-06 03:20:34 +00:00
187 lines
5.4 KiB
Python
187 lines
5.4 KiB
Python
|
"""MonoDepthNet: Network for monocular depth estimation trained by mixing several datasets.
|
||
|
This file contains code that is adapted from
|
||
|
https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
|
||
|
"""
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
from torchvision import models
|
||
|
|
||
|
|
||
|
class MonoDepthNet(nn.Module):
|
||
|
"""Network for monocular depth estimation.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, path=None, features=256):
|
||
|
"""Init.
|
||
|
|
||
|
Args:
|
||
|
path (str, optional): Path to saved model. Defaults to None.
|
||
|
features (int, optional): Number of features. Defaults to 256.
|
||
|
"""
|
||
|
super(MonoDepthNet,self).__init__()
|
||
|
|
||
|
resnet = models.resnet50(pretrained=False)
|
||
|
|
||
|
self.pretrained = nn.Module()
|
||
|
self.scratch = nn.Module()
|
||
|
self.pretrained.layer1 = nn.Sequential(resnet.conv1, resnet.bn1, resnet.relu,
|
||
|
resnet.maxpool, resnet.layer1)
|
||
|
|
||
|
self.pretrained.layer2 = resnet.layer2
|
||
|
self.pretrained.layer3 = resnet.layer3
|
||
|
self.pretrained.layer4 = resnet.layer4
|
||
|
|
||
|
# adjust channel number of feature maps
|
||
|
self.scratch.layer1_rn = nn.Conv2d(256, features, kernel_size=3, stride=1, padding=1, bias=False)
|
||
|
self.scratch.layer2_rn = nn.Conv2d(512, features, kernel_size=3, stride=1, padding=1, bias=False)
|
||
|
self.scratch.layer3_rn = nn.Conv2d(1024, features, kernel_size=3, stride=1, padding=1, bias=False)
|
||
|
self.scratch.layer4_rn = nn.Conv2d(2048, features, kernel_size=3, stride=1, padding=1, bias=False)
|
||
|
|
||
|
self.scratch.refinenet4 = FeatureFusionBlock(features)
|
||
|
self.scratch.refinenet3 = FeatureFusionBlock(features)
|
||
|
self.scratch.refinenet2 = FeatureFusionBlock(features)
|
||
|
self.scratch.refinenet1 = FeatureFusionBlock(features)
|
||
|
|
||
|
# adaptive output module: 2 convolutions and upsampling
|
||
|
self.scratch.output_conv = nn.Sequential(nn.Conv2d(features, 128, kernel_size=3, stride=1, padding=1),
|
||
|
nn.Conv2d(128, 1, kernel_size=3, stride=1, padding=1),
|
||
|
Interpolate(scale_factor=2, mode='bilinear'))
|
||
|
|
||
|
# load model
|
||
|
if path:
|
||
|
self.load(path)
|
||
|
|
||
|
def forward(self, x):
|
||
|
"""Forward pass.
|
||
|
|
||
|
Args:
|
||
|
x (tensor): input data (image)
|
||
|
|
||
|
Returns:
|
||
|
tensor: depth
|
||
|
"""
|
||
|
layer_1 = self.pretrained.layer1(x)
|
||
|
layer_2 = self.pretrained.layer2(layer_1)
|
||
|
layer_3 = self.pretrained.layer3(layer_2)
|
||
|
layer_4 = self.pretrained.layer4(layer_3)
|
||
|
|
||
|
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
||
|
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
||
|
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
||
|
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
||
|
|
||
|
path_4 = self.scratch.refinenet4(layer_4_rn)
|
||
|
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
||
|
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
||
|
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
||
|
|
||
|
out = self.scratch.output_conv(path_1)
|
||
|
|
||
|
return out
|
||
|
|
||
|
def load(self, path):
|
||
|
"""Load model from file.
|
||
|
|
||
|
Args:
|
||
|
path (str): file path
|
||
|
"""
|
||
|
parameters = torch.load(path)
|
||
|
|
||
|
self.load_state_dict(parameters)
|
||
|
|
||
|
|
||
|
class Interpolate(nn.Module):
|
||
|
"""Interpolation module.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, scale_factor, mode):
|
||
|
"""Init.
|
||
|
|
||
|
Args:
|
||
|
scale_factor (float): scaling
|
||
|
mode (str): interpolation mode
|
||
|
"""
|
||
|
super(Interpolate, self).__init__()
|
||
|
|
||
|
self.interp = nn.functional.interpolate
|
||
|
self.scale_factor = scale_factor
|
||
|
self.mode = mode
|
||
|
|
||
|
def forward(self, x):
|
||
|
"""Forward pass.
|
||
|
|
||
|
Args:
|
||
|
x (tensor): input
|
||
|
|
||
|
Returns:
|
||
|
tensor: interpolated data
|
||
|
"""
|
||
|
x = self.interp(x, scale_factor=self.scale_factor, mode=self.mode, align_corners=False)
|
||
|
|
||
|
return x
|
||
|
|
||
|
|
||
|
class ResidualConvUnit(nn.Module):
|
||
|
"""Residual convolution module.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, features):
|
||
|
"""Init.
|
||
|
|
||
|
Args:
|
||
|
features (int): number of features
|
||
|
"""
|
||
|
super(ResidualConvUnit,self).__init__()
|
||
|
|
||
|
self.conv1 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True)
|
||
|
self.conv2 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=False)
|
||
|
self.relu = nn.ReLU(inplace=True)
|
||
|
|
||
|
def forward(self, x):
|
||
|
"""Forward pass.
|
||
|
|
||
|
Args:
|
||
|
x (tensor): input
|
||
|
|
||
|
Returns:
|
||
|
tensor: output
|
||
|
"""
|
||
|
out = self.relu(x)
|
||
|
out = self.conv1(out)
|
||
|
out = self.relu(out)
|
||
|
out = self.conv2(out)
|
||
|
|
||
|
return out + x
|
||
|
|
||
|
|
||
|
class FeatureFusionBlock(nn.Module):
|
||
|
"""Feature fusion block.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, features):
|
||
|
"""Init.
|
||
|
|
||
|
Args:
|
||
|
features (int): number of features
|
||
|
"""
|
||
|
super(FeatureFusionBlock,self).__init__()
|
||
|
|
||
|
self.resConfUnit = ResidualConvUnit(features)
|
||
|
|
||
|
def forward(self, *xs):
|
||
|
"""Forward pass.
|
||
|
|
||
|
Returns:
|
||
|
tensor: output
|
||
|
"""
|
||
|
output = xs[0]
|
||
|
|
||
|
if len(xs) == 2:
|
||
|
output += self.resConfUnit(xs[1])
|
||
|
|
||
|
output = self.resConfUnit(output)
|
||
|
output = nn.functional.interpolate(output, scale_factor=2,
|
||
|
mode='bilinear', align_corners=True)
|
||
|
|
||
|
return output
|