mirror of
https://github.com/kritiksoman/GIMP-ML
synced 2024-11-16 06:12:47 +00:00
101 lines
3.3 KiB
Python
101 lines
3.3 KiB
Python
|
#!/usr/bin/python
|
||
|
# -*- encoding: utf-8 -*-
|
||
|
|
||
|
from logger import setup_logger
|
||
|
from model import BiSeNet
|
||
|
|
||
|
import torch
|
||
|
|
||
|
import os
|
||
|
import os.path as osp
|
||
|
import numpy as np
|
||
|
from PIL import Image
|
||
|
import torchvision.transforms as transforms
|
||
|
import cv2
|
||
|
|
||
|
def vis_parsing_maps(im, parsing_anno, stride, save_im=False, save_path='vis_results/parsing_map_on_im.jpg'):
|
||
|
# Colors for all 20 parts
|
||
|
part_colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0],
|
||
|
[255, 0, 85], [255, 0, 170],
|
||
|
[0, 255, 0], [85, 255, 0], [170, 255, 0],
|
||
|
[0, 255, 85], [0, 255, 170],
|
||
|
[0, 0, 255], [85, 0, 255], [170, 0, 255],
|
||
|
[0, 85, 255], [0, 170, 255],
|
||
|
[255, 255, 0], [255, 255, 85], [255, 255, 170],
|
||
|
[255, 0, 255], [255, 85, 255], [255, 170, 255],
|
||
|
[0, 255, 255], [85, 255, 255], [170, 255, 255]]
|
||
|
|
||
|
im = np.array(im)
|
||
|
vis_im = im.copy().astype(np.uint8)
|
||
|
vis_parsing_anno = parsing_anno.copy().astype(np.uint8)
|
||
|
vis_parsing_anno = cv2.resize(vis_parsing_anno, None, fx=stride, fy=stride, interpolation=cv2.INTER_NEAREST)
|
||
|
vis_parsing_anno_color = np.zeros((vis_parsing_anno.shape[0], vis_parsing_anno.shape[1], 3)) + 255
|
||
|
|
||
|
num_of_class = np.max(vis_parsing_anno)
|
||
|
|
||
|
for pi in range(1, num_of_class + 1):
|
||
|
index = np.where(vis_parsing_anno == pi)
|
||
|
vis_parsing_anno_color[index[0], index[1], :] = part_colors[pi]
|
||
|
|
||
|
vis_parsing_anno_color = vis_parsing_anno_color.astype(np.uint8)
|
||
|
# print(vis_parsing_anno_color.shape, vis_im.shape)
|
||
|
vis_im = cv2.addWeighted(cv2.cvtColor(vis_im, cv2.COLOR_RGB2BGR), 0.4, vis_parsing_anno_color, 0.6, 0)
|
||
|
|
||
|
# Save result or not
|
||
|
if save_im:
|
||
|
cv2.imwrite(save_path[:-4] +'.png', vis_parsing_anno)
|
||
|
cv2.imwrite(save_path, vis_im, [int(cv2.IMWRITE_JPEG_QUALITY), 100])
|
||
|
|
||
|
# return vis_im
|
||
|
|
||
|
def evaluate(respth='./res/test_res', dspth='./data', cp='model_final_diss.pth'):
|
||
|
|
||
|
if not os.path.exists(respth):
|
||
|
os.makedirs(respth)
|
||
|
|
||
|
n_classes = 19
|
||
|
net = BiSeNet(n_classes=n_classes)
|
||
|
save_pth = osp.join('res/cp', cp)
|
||
|
|
||
|
if torch.cuda.is_available():
|
||
|
net.cuda()
|
||
|
net.load_state_dict(torch.load(save_pth))
|
||
|
else:
|
||
|
net.load_state_dict(torch.load(save_pth, map_location=lambda storage, loc: storage))
|
||
|
|
||
|
|
||
|
net.eval()
|
||
|
|
||
|
to_tensor = transforms.Compose([
|
||
|
transforms.ToTensor(),
|
||
|
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
|
||
|
])
|
||
|
with torch.no_grad():
|
||
|
for image_path in os.listdir(dspth):
|
||
|
img = Image.open(osp.join(dspth, image_path))
|
||
|
image = img.resize((512, 512), Image.BILINEAR)
|
||
|
img = to_tensor(image)
|
||
|
img = torch.unsqueeze(img, 0)
|
||
|
if torch.cuda.is_available():
|
||
|
img = img.cuda()
|
||
|
out = net(img)[0]
|
||
|
if torch.cuda.is_available():
|
||
|
parsing = out.squeeze(0).cpu().numpy().argmax(0)
|
||
|
else:
|
||
|
parsing = out.squeeze(0).numpy().argmax(0)
|
||
|
# print(parsing)
|
||
|
print(np.unique(parsing))
|
||
|
|
||
|
vis_parsing_maps(image, parsing, stride=1, save_im=True, save_path=osp.join(respth, image_path))
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
evaluate(dspth='makeup/116_ori.png', cp='79999_iter.pth')
|
||
|
|
||
|
|