2020-08-28 16:35:51 +00:00
|
|
|
import os
|
|
|
|
|
|
|
|
baseLoc = os.path.dirname(os.path.realpath(__file__)) + '/'
|
|
|
|
|
|
|
|
from gimpfu import *
|
|
|
|
import sys
|
|
|
|
|
|
|
|
sys.path.extend([baseLoc + 'gimpenv/lib/python2.7', baseLoc + 'gimpenv/lib/python2.7/site-packages',
|
|
|
|
baseLoc + 'gimpenv/lib/python2.7/site-packages/setuptools', baseLoc + 'PD-Denoising-pytorch'])
|
|
|
|
|
|
|
|
|
|
|
|
from denoiser import *
|
|
|
|
from argparse import Namespace
|
|
|
|
|
2020-09-20 13:25:54 +00:00
|
|
|
def clrImg(Img,cFlag):
|
2020-08-28 16:35:51 +00:00
|
|
|
w, h, _ = Img.shape
|
|
|
|
opt = Namespace(color=1, cond=1, delog='logsdc', ext_test_noise_level=None,
|
|
|
|
k=0, keep_ind=None, mode='MC', num_of_layers=20, out_dir='results_bc',
|
|
|
|
output_map=0, ps=2, ps_scale=2, real_n=1, refine=0, refine_opt=1,
|
|
|
|
rescale=1, scale=1, spat_n=0, test_data='real_night', test_data_gnd='Set12',
|
|
|
|
test_noise_level=None, wbin=512, zeroout=0)
|
|
|
|
c = 1 if opt.color == 0 else 3
|
2020-09-27 03:20:41 +00:00
|
|
|
model = DnCNN_c(channels=c, num_of_layers=opt.num_of_layers, num_of_est=2 * c)
|
|
|
|
model_est = Estimation_direct(c, 2 * c)
|
|
|
|
# device_ids = [0]
|
|
|
|
# model = nn.DataParallel(net, device_ids=device_ids)
|
|
|
|
# model_est = nn.DataParallel(est_net, device_ids=device_ids)# Estimator Model
|
2020-09-20 13:25:54 +00:00
|
|
|
if torch.cuda.is_available() and not cFlag:
|
2020-08-28 16:35:51 +00:00
|
|
|
ckpt_est = torch.load(baseLoc+'weights/deepdenoise/est_net.pth')
|
|
|
|
ckpt = torch.load(baseLoc+'weights/deepdenoise/net.pth')
|
|
|
|
model = model.cuda()
|
|
|
|
model_est = model_est.cuda()
|
|
|
|
else:
|
|
|
|
ckpt = torch.load(baseLoc+'weights/deepdenoise/net.pth',map_location=torch.device("cpu"))
|
|
|
|
ckpt_est = torch.load(baseLoc+'weights/deepdenoise/est_net.pth',map_location=torch.device("cpu"))
|
2020-09-27 03:20:41 +00:00
|
|
|
|
|
|
|
ckpt = {key.replace("module.",""):value for key,value in ckpt.items()}
|
|
|
|
ckpt_est = {key.replace("module.",""):value for key,value in ckpt_est.items()}
|
|
|
|
|
2020-08-28 16:35:51 +00:00
|
|
|
model.load_state_dict(ckpt)
|
|
|
|
model.eval()
|
|
|
|
model_est.load_state_dict(ckpt_est)
|
|
|
|
model_est.eval()
|
|
|
|
gimp.progress_update(float(0.005))
|
|
|
|
gimp.displays_flush()
|
|
|
|
|
|
|
|
Img = Img[:, :, ::-1] # change it to RGB
|
|
|
|
Img = cv2.resize(Img, (0, 0), fx=opt.scale, fy=opt.scale)
|
|
|
|
if opt.color == 0:
|
|
|
|
Img = Img[:, :, 0] # For gray images
|
|
|
|
Img = np.expand_dims(Img, 2)
|
|
|
|
pss = 1
|
|
|
|
if opt.ps == 1:
|
|
|
|
pss = decide_scale_factor(Img / 255., model_est, color=opt.color, thre=0.008, plot_flag=1, stopping=4,
|
|
|
|
mark=opt.out_dir + '/' + file_name)[0]
|
|
|
|
# print(pss)
|
|
|
|
Img = pixelshuffle(Img, pss)
|
|
|
|
elif opt.ps == 2:
|
|
|
|
pss = opt.ps_scale
|
|
|
|
|
|
|
|
merge_out = np.zeros([w, h, 3])
|
|
|
|
wbin = opt.wbin
|
|
|
|
i = 0
|
2020-09-20 13:25:54 +00:00
|
|
|
idx=0
|
2020-09-26 14:41:20 +00:00
|
|
|
t=float(w*h)/float(wbin*wbin)
|
2020-08-28 16:35:51 +00:00
|
|
|
while i < w:
|
|
|
|
i_end = min(i + wbin, w)
|
|
|
|
j = 0
|
|
|
|
while j < h:
|
|
|
|
j_end = min(j + wbin, h)
|
|
|
|
patch = Img[i:i_end, j:j_end, :]
|
2020-09-26 14:41:20 +00:00
|
|
|
patch_merge_out_numpy = denoiser(patch, c, pss, model, model_est, opt, cFlag)
|
2020-08-28 16:35:51 +00:00
|
|
|
merge_out[i:i_end, j:j_end, :] = patch_merge_out_numpy
|
|
|
|
j = j_end
|
2020-09-20 13:25:54 +00:00
|
|
|
idx=idx+1
|
|
|
|
gimp.progress_update(float(idx)/float(t))
|
2020-08-28 16:35:51 +00:00
|
|
|
gimp.displays_flush()
|
|
|
|
i = i_end
|
|
|
|
|
|
|
|
|
|
|
|
return merge_out[:, :, ::-1]
|
|
|
|
|
|
|
|
|
|
|
|
def channelData(layer): # convert gimp image to numpy
|
|
|
|
region = layer.get_pixel_rgn(0, 0, layer.width, layer.height)
|
|
|
|
pixChars = region[:, :] # Take whole layer
|
|
|
|
bpp = region.bpp
|
|
|
|
# return np.frombuffer(pixChars,dtype=np.uint8).reshape(len(pixChars)/bpp,bpp)
|
|
|
|
return np.frombuffer(pixChars, dtype=np.uint8).reshape(layer.height, layer.width, bpp)
|
|
|
|
|
|
|
|
|
|
|
|
def createResultLayer(image, name, result):
|
|
|
|
rlBytes = np.uint8(result).tobytes();
|
|
|
|
rl = gimp.Layer(image, name, image.width, image.height, 0, 100, NORMAL_MODE)
|
|
|
|
region = rl.get_pixel_rgn(0, 0, rl.width, rl.height, True)
|
|
|
|
region[:, :] = rlBytes
|
|
|
|
image.add_layer(rl, 0)
|
|
|
|
gimp.displays_flush()
|
|
|
|
|
|
|
|
|
2020-09-20 13:25:54 +00:00
|
|
|
def deepdenoise(img, layer,cFlag):
|
2020-08-28 16:35:51 +00:00
|
|
|
imgmat = channelData(layer)
|
2020-11-28 12:01:37 +00:00
|
|
|
if imgmat.shape[0] != img.height or imgmat.shape[1] != img.width:
|
|
|
|
pdb.gimp_message(" Do (Layer -> Layer to Image Size) first and try again.")
|
|
|
|
else:
|
|
|
|
if torch.cuda.is_available() and not cFlag:
|
|
|
|
gimp.progress_init("(Using GPU) Denoising " + layer.name + "...")
|
|
|
|
else:
|
|
|
|
gimp.progress_init("(Using CPU) Denoising " + layer.name + "...")
|
|
|
|
if imgmat.shape[2] == 4: # get rid of alpha channel
|
|
|
|
imgmat = imgmat[:,:,0:3]
|
|
|
|
cpy = clrImg(imgmat,cFlag)
|
|
|
|
createResultLayer(img, 'new_output', cpy)
|
2020-08-28 16:35:51 +00:00
|
|
|
|
|
|
|
|
|
|
|
register(
|
|
|
|
"deep-denoising",
|
|
|
|
"deep-denoising",
|
|
|
|
"Denoise image based on deep learning.",
|
|
|
|
"Kritik Soman",
|
|
|
|
"Your",
|
|
|
|
"2020",
|
|
|
|
"deep-denoising...",
|
|
|
|
"*", # Alternately use RGB, RGB*, GRAY*, INDEXED etc.
|
|
|
|
[(PF_IMAGE, "image", "Input image", None),
|
|
|
|
(PF_DRAWABLE, "drawable", "Input drawable", None),
|
2020-09-20 13:25:54 +00:00
|
|
|
(PF_BOOL, "fcpu", "Force CPU", False)
|
2020-08-28 16:35:51 +00:00
|
|
|
],
|
|
|
|
[],
|
|
|
|
deepdenoise, menu="<Image>/Layer/GIML-ML")
|
|
|
|
|
|
|
|
main()
|