mirror of
https://github.com/kritiksoman/GIMP-ML
synced 2024-11-06 03:20:34 +00:00
108 lines
4.0 KiB
Python
108 lines
4.0 KiB
Python
|
from __future__ import print_function
|
||
|
|
||
|
print ('?')
|
||
|
import torch
|
||
|
import numpy as np
|
||
|
from PIL import Image
|
||
|
# import numpy as np
|
||
|
import os
|
||
|
|
||
|
# Converts a Tensor into a Numpy array
|
||
|
# |imtype|: the desired type of the converted numpy array
|
||
|
def tensor2im(image_tensor, imtype=np.uint8, normalize=True):
|
||
|
if isinstance(image_tensor, list):
|
||
|
image_numpy = []
|
||
|
for i in range(len(image_tensor)):
|
||
|
image_numpy.append(tensor2im(image_tensor[i], imtype, normalize))
|
||
|
return image_numpy
|
||
|
image_numpy = image_tensor.cpu().float().numpy()
|
||
|
#if normalize:
|
||
|
# image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0
|
||
|
#else:
|
||
|
# image_numpy = np.transpose(image_numpy, (1, 2, 0)) * 255.0
|
||
|
image_numpy = (image_numpy + 1) / 2.0
|
||
|
image_numpy = np.clip(image_numpy, 0, 1)
|
||
|
if image_numpy.shape[2] == 1 or image_numpy.shape[2] > 3:
|
||
|
image_numpy = image_numpy[:,:,0]
|
||
|
|
||
|
return image_numpy
|
||
|
|
||
|
# Converts a one-hot tensor into a colorful label map
|
||
|
def tensor2label(label_tensor, n_label, imtype=np.uint8):
|
||
|
if n_label == 0:
|
||
|
return tensor2im(label_tensor, imtype)
|
||
|
label_tensor = label_tensor.cpu().float()
|
||
|
if label_tensor.size()[0] > 1:
|
||
|
label_tensor = label_tensor.max(0, keepdim=True)[1]
|
||
|
label_tensor = Colorize(n_label)(label_tensor)
|
||
|
#label_numpy = np.transpose(label_tensor.numpy(), (1, 2, 0))
|
||
|
label_numpy = label_tensor.numpy()
|
||
|
label_numpy = label_numpy / 255.0
|
||
|
|
||
|
return label_numpy
|
||
|
|
||
|
def save_image(image_numpy, image_path):
|
||
|
image_pil = Image.fromarray(image_numpy)
|
||
|
image_pil.save(image_path)
|
||
|
|
||
|
def mkdirs(paths):
|
||
|
if isinstance(paths, list) and not isinstance(paths, str):
|
||
|
for path in paths:
|
||
|
mkdir(path)
|
||
|
else:
|
||
|
mkdir(paths)
|
||
|
|
||
|
def mkdir(path):
|
||
|
if not os.path.exists(path):
|
||
|
os.makedirs(path)
|
||
|
|
||
|
###############################################################################
|
||
|
# Code from
|
||
|
# https://github.com/ycszen/pytorch-seg/blob/master/transform.py
|
||
|
# Modified so it complies with the Citscape label map colors
|
||
|
###############################################################################
|
||
|
def uint82bin(n, count=8):
|
||
|
"""returns the binary of integer n, count refers to amount of bits"""
|
||
|
return ''.join([str((n >> y) & 1) for y in range(count-1, -1, -1)])
|
||
|
|
||
|
def labelcolormap(N):
|
||
|
if N == 35: # cityscape
|
||
|
cmap = np.array([( 0, 0, 0), ( 0, 0, 0), ( 0, 0, 0), ( 0, 0, 0), ( 0, 0, 0), (111, 74, 0), ( 81, 0, 81),
|
||
|
(128, 64,128), (244, 35,232), (250,170,160), (230,150,140), ( 70, 70, 70), (102,102,156), (190,153,153),
|
||
|
(180,165,180), (150,100,100), (150,120, 90), (153,153,153), (153,153,153), (250,170, 30), (220,220, 0),
|
||
|
(107,142, 35), (152,251,152), ( 70,130,180), (220, 20, 60), (255, 0, 0), ( 0, 0,142), ( 0, 0, 70),
|
||
|
( 0, 60,100), ( 0, 0, 90), ( 0, 0,110), ( 0, 80,100), ( 0, 0,230), (119, 11, 32), ( 0, 0,142)],
|
||
|
dtype=np.uint8)
|
||
|
else:
|
||
|
cmap = np.zeros((N, 3), dtype=np.uint8)
|
||
|
for i in range(N):
|
||
|
r, g, b = 0, 0, 0
|
||
|
id = i
|
||
|
for j in range(7):
|
||
|
str_id = uint82bin(id)
|
||
|
r = r ^ (np.uint8(str_id[-1]) << (7-j))
|
||
|
g = g ^ (np.uint8(str_id[-2]) << (7-j))
|
||
|
b = b ^ (np.uint8(str_id[-3]) << (7-j))
|
||
|
id = id >> 3
|
||
|
cmap[i, 0] = r
|
||
|
cmap[i, 1] = g
|
||
|
cmap[i, 2] = b
|
||
|
return cmap
|
||
|
|
||
|
class Colorize(object):
|
||
|
def __init__(self, n=35):
|
||
|
self.cmap = labelcolormap(n)
|
||
|
self.cmap = torch.from_numpy(self.cmap[:n])
|
||
|
|
||
|
def __call__(self, gray_image):
|
||
|
size = gray_image.size()
|
||
|
color_image = torch.ByteTensor(3, size[1], size[2]).fill_(0)
|
||
|
|
||
|
for label in range(0, len(self.cmap)):
|
||
|
mask = (label == gray_image[0]).cpu()
|
||
|
color_image[0][mask] = self.cmap[label][0]
|
||
|
color_image[1][mask] = self.cmap[label][1]
|
||
|
color_image[2][mask] = self.cmap[label][2]
|
||
|
|
||
|
return color_image
|