GIMP-ML/gimp-plugins/colorize.py

117 lines
3.4 KiB
Python
Raw Normal View History

2020-05-12 05:40:16 +00:00
import os
baseLoc = os.path.dirname(os.path.realpath(__file__))+'/'
2020-04-27 04:32:33 +00:00
2020-04-27 04:32:33 +00:00
from gimpfu import *
import sys
sys.path.extend([baseLoc+'gimpenv/lib/python2.7',baseLoc+'gimpenv/lib/python2.7/site-packages',baseLoc+'gimpenv/lib/python2.7/site-packages/setuptools',baseLoc+'neural-colorization'])
import torch
from model import generator
from torch.autograd import Variable
from scipy.ndimage import zoom
from PIL import Image
from argparse import Namespace
import numpy as np
# from skimage.color import rgb2yuv,yuv2rgb
import cv2
2020-04-27 04:32:33 +00:00
def getcolor(input_image):
p = np.repeat(input_image, 3, axis=2)
if torch.cuda.is_available():
g_available=1
else:
g_available=-1
args=Namespace(model=baseLoc+'neural-colorization/model.pth',gpu=g_available)
G = generator()
if torch.cuda.is_available():
G=G.cuda()
G.load_state_dict(torch.load(args.model))
else:
G.load_state_dict(torch.load(args.model,map_location=torch.device('cpu')))
p = p.astype(np.float32)
p = p / 255
img_yuv = cv2.cvtColor(p, cv2.COLOR_RGB2YUV)
# img_yuv = rgb2yuv(p)
2020-04-27 04:32:33 +00:00
H,W,_ = img_yuv.shape
infimg = np.expand_dims(np.expand_dims(img_yuv[...,0], axis=0), axis=0)
img_variable = Variable(torch.Tensor(infimg-0.5))
if args.gpu>=0:
img_variable=img_variable.cuda(args.gpu)
res = G(img_variable)
uv=res.cpu().detach().numpy()
uv[:,0,:,:] *= 0.436
uv[:,1,:,:] *= 0.615
(_,_,H1,W1) = uv.shape
uv = zoom(uv,(1,1,float(H)/H1,float(W)/W1))
yuv = np.concatenate([infimg,uv],axis=1)[0]
# rgb=yuv2rgb(yuv.transpose(1,2,0))
# out=(rgb.clip(min=0,max=1)*255)[:,:,[0,1,2]]
rgb = cv2.cvtColor(yuv.transpose(1, 2, 0)*255, cv2.COLOR_YUV2RGB)
rgb = rgb.clip(min=0,max=255)
out = rgb.astype(np.uint8)
2020-04-27 04:32:33 +00:00
return out
def channelData(layer):#convert gimp image to numpy
region=layer.get_pixel_rgn(0, 0, layer.width,layer.height)
pixChars=region[:,:] # Take whole layer
bpp=region.bpp
# return np.frombuffer(pixChars,dtype=np.uint8).reshape(len(pixChars)/bpp,bpp)
return np.frombuffer(pixChars,dtype=np.uint8).reshape(layer.height,layer.width,bpp)
def createResultLayer(image,name,result):
rlBytes=np.uint8(result).tobytes();
rl=gimp.Layer(image,name,image.width,image.height,image.active_layer.type,100,NORMAL_MODE)
region=rl.get_pixel_rgn(0, 0, rl.width,rl.height,True)
region[:,:]=rlBytes
image.add_layer(rl,0)
gimp.displays_flush()
def genNewImg(name,layer_np):
h,w,d=layer_np.shape
img=pdb.gimp_image_new(w, h, RGB)
display=pdb.gimp_display_new(img)
rlBytes=np.uint8(layer_np).tobytes();
rl=gimp.Layer(img,name,img.width,img.height,RGB,100,NORMAL_MODE)
region=rl.get_pixel_rgn(0, 0, rl.width,rl.height,True)
region[:,:]=rlBytes
pdb.gimp_image_insert_layer(img, rl, None, 0)
gimp.displays_flush()
def colorize(img, layer) :
gimp.progress_init("Coloring " + layer.name + "...")
imgmat = channelData(layer)
cpy=getcolor(imgmat)
genNewImg(layer.name+'_colored',cpy)
register(
"colorize",
"colorize",
"Generate monocular disparity map based on deep learning.",
"Kritik Soman",
"Your",
"2020",
"colorize...",
"*", # Alternately use RGB, RGB*, GRAY*, INDEXED etc.
[ (PF_IMAGE, "image", "Input image", None),
(PF_DRAWABLE, "drawable", "Input drawable", None),
],
[],
colorize, menu="<Image>/Layer/GIML-ML")
main()