Farm-Data-Relay-System/fdrs_gateway.cpp
2022-06-23 01:06:13 +02:00

559 lines
13 KiB
C++

#include "fdrs_gateway.h"
// #define ESP8266
// #define ESP32
// #define USE_WIFI
bool ESP_FDRSGateWay::is_init = false;
std::vector<DataReading_t> FDRSGateWayBase::_data;
std::vector<FDRSGateWayBase*> FDRSGateWayBase::_object_list;
uint8_t newData = 0;
uint8_t ln = 0;
DataReading_t theData[256];
DataReadingBuffer_t ESPNOWGbuffer;
DataReadingBuffer_t ESPNOW1buffer;
uint32_t timeESPNOW1 = 0;
DataReadingBuffer_t ESPNOW2buffer;
uint32_t timeESPNOW2 = 0;
DataReadingBuffer_t SERIALbuffer;
uint32_t timeSERIAL = 0;
DataReadingBuffer_t MQTTbuffer;
uint32_t timeMQTT = 0;
DataReadingBuffer_t LORAGbuffer;
uint32_t timeLORAG = 0;
DataReadingBuffer_t LORA1buffer;
uint32_t timeLORA1 = 0;
DataReadingBuffer_t LORA2buffer;
uint32_t timeLORA2 = 0;
// Set ESP-NOW send and receive callbacks for either ESP8266 or ESP32
void ESP_FDRSGateWay::OnDataRecv(uint8_t * mac, const uint8_t *incomingData, int len){
DataReading_t data;
memcpy(&data, incomingData, sizeof(theData));
FDRSGateWayBase::add_data(&data);
// TODO: doe something about this newData
// memcpy(&theData, incomingData, sizeof(theData));
// memcpy(&incMAC, mac, sizeof(incMAC));
// DBG("Incoming ESP-NOW.");
// ln = len / sizeof(DataReading_t);
// if (memcmp(&incMAC, &ESPNOW1, 6) == 0){
// newData = 1;
// return;
// }
// if (memcmp(&incMAC, &ESPNOW2, 6) == 0){
// newData = 2;
// return;
// }
// newData = 3;
}
#if defined(ESP8266)
void ESP8266OnDataSent(uint8_t *mac_addr, uint8_t sendStatus) {
}
void ESP8266OnDataRecv(uint8_t* mac, uint8_t *incomingData, uint8_t len) {
ESP_FDRSGateWay::OnDataRecv((uint8_t*)mac,*(const uint8_t *)incomingData,len);
}
#endif
#if defined(ESP32)
void ESP32OnDataSent(const uint8_t *mac_addr, esp_now_send_status_t status) {
}
void ESP32OnDataRecv(const uint8_t * mac, const uint8_t *incomingData, int len) {
ESP_FDRSGateWay::OnDataRecv((uint8_t*)mac,incomingData,len);
}
#endif
void getSerial() {
String incomingString = UART_IF.readStringUntil('\n');
DynamicJsonDocument doc(24576);
DeserializationError error = deserializeJson(doc, incomingString);
// Test if parsing succeeds.
if (error) {
// DBG("json parse err");
// DBG(incomingString);
return;
}
int s = doc.size();
//UART_IF.println(s);
for (int i = 0; i < s; i++) {
theData[i].id = doc[i]["id"];
theData[i].type = doc[i]["type"];
theData[i].data = doc[i]["data"];
}
ln = s;
newData = 4;
DBG("Incoming Serial.");
}
void mqtt_callback(char* topic, byte * message, unsigned int length) {
String incomingString;
DBG(topic);
for (int i = 0; i < length; i++) {
incomingString += (char)message[i];
}
StaticJsonDocument<2048> doc;
DeserializationError error = deserializeJson(doc, incomingString);
if (error) { // Test if parsing succeeds.
DBG("json parse err");
DBG(incomingString);
return;
}
int s = doc.size();
//UART_IF.println(s);
for (int i = 0; i < s; i++) {
theData[i].id = doc[i]["id"];
theData[i].type = doc[i]["type"];
theData[i].data = doc[i]["data"];
}
ln = s;
newData = 5;
DBG("Incoming MQTT.");
}
// void getLoRa() {
// #ifdef USE_LORA
// int packetSize = LoRa.parsePacket();
// if (packetSize== 0) {
// return;
// }
// uint8_t packet[packetSize];
// uint8_t incLORAMAC[2];
// LoRa.readBytes((uint8_t *)&packet, packetSize);
// // for (int i = 0; i < packetSize; i++) {
// // UART_IF.println(packet[i], HEX);
// // }
// //Check if addressed to this device
// if (memcmp(&packet, &selfAddress[3], 3) != 0) {
// return;
// }
// memcpy(&incLORAMAC, &packet[3], 2); //Split off address portion of packet
// memcpy(&theData, &packet[5], packetSize - 5); //Split off data portion of packet
// //Check if it is from a registered sender
// if(memcmp(&incLORAMAC, &LoRa1, 2) == 0){
// newData = 7;
// }
// else if(memcmp(&incLORAMAC, &LoRa2, 2) == 0){
// newData = 8;
// }
// newData = 6;
// ln = (packetSize - 5) / sizeof(DataReading_t);
// DBG("Incoming LoRa.");
// #endif
// }
void sendESPNOW(uint8_t address) {
DBG("Sending ESP-NOW.");
uint8_t NEWPEER[] = {MAC_PREFIX, address};
#if defined(ESP32)
esp_now_peer_info_t peerInfo;
peerInfo.ifidx = WIFI_IF_STA;
peerInfo.channel = 0;
peerInfo.encrypt = false;
memcpy(peerInfo.peer_addr, NEWPEER, 6);
if (esp_now_add_peer(&peerInfo) != ESP_OK) {
DBG("Failed to add peer");
return;
}
#endif
DataReading_t thePacket[ln];
int j = 0;
for (int i = 0; i < ln; i++) {
if ( j > espnow_size) {
j = 0;
esp_now_send(NEWPEER, (uint8_t *) &thePacket, sizeof(thePacket));
}
thePacket[j] = theData[i];
j++;
}
esp_now_send(NEWPEER, (uint8_t *) &thePacket, j * sizeof(DataReading_t));
esp_now_del_peer(NEWPEER);
}
void sendSerial() {
DBG("Sending Serial.");
DynamicJsonDocument doc(24576);
for (int i = 0; i < ln; i++) {
doc[i]["id"] = theData[i].id;
doc[i]["type"] = theData[i].type;
doc[i]["data"] = theData[i].data;
}
serializeJson(doc, UART_IF);
UART_IF.println();
#ifndef ESP8266
serializeJson(doc, Serial);
Serial.println();
#endif
}
void sendMQTT() {
#ifdef USE_WIFI
DBG("Sending MQTT.");
DynamicJsonDocument doc(24576);
for (int i = 0; i < ln; i++) {
doc[i]["id"] = theData[i].id;
doc[i]["type"] = theData[i].type;
doc[i]["data"] = theData[i].data;
}
String outgoingString;
serializeJson(doc, outgoingString);
client.publish(TOPIC_DATA, (char*) outgoingString.c_str());
#endif
}
void bufferESPNOW(uint8_t interface) {
DBG("Buffering ESP-NOW.");
switch (interface) {
case 0:
memcpy(&ESPNOWGbuffer.buffer[ESPNOWGbuffer.len],&theData[0],ln);
ESPNOWGbuffer.len += ln;
break;
case 1:
memcpy(&ESPNOW1buffer.buffer[ESPNOW1buffer.len],&theData[0],ln);
ESPNOW1buffer.len += ln;
break;
case 2:
memcpy(&ESPNOW2buffer.buffer[ESPNOW2buffer.len],&theData[0],ln);
ESPNOW2buffer.len += ln;
break;
}
}
void bufferSerial() {
DBG("Buffering Serial.");
memcpy(&SERIALbuffer.buffer[SERIALbuffer.len],&theData[0],ln);
SERIALbuffer.len += ln;
//UART_IF.println("SENDSERIAL:" + String(SERIALbuffer.len) + " ");
}
void bufferMQTT() {
DBG("Buffering MQTT.");
memcpy(&MQTTbuffer.buffer[MQTTbuffer.len],&theData[0],ln);
MQTTbuffer.len += ln;
}
void bufferLoRa(uint8_t interface) {
DBG("Buffering LoRa.");
switch (interface) {
case 0:
memcpy(&LORAGbuffer.buffer[LORAGbuffer.len],&theData[0],ln);
LORAGbuffer.len += ln;
break;
case 1:
memcpy(&LORA1buffer.buffer[LORA1buffer.len],&theData[0],ln);
LORA1buffer.len += ln;
break;
case 2:
memcpy(&LORA2buffer.buffer[LORA2buffer.len],&theData[0],ln);
LORA2buffer.len += ln;
break;
}
}
void espSend(uint8_t *mac,DataReading_t *buffer, uint16_t *len){
DataReading_t thePacket[espnow_size];
int j = 0;
for (int i = 0; i < *len; i++) {
if ( j > espnow_size) {
j = 0;
esp_now_send(mac, (uint8_t *) &thePacket, sizeof(thePacket));
}
thePacket[j] = buffer[i];
j++;
}
esp_now_send(mac, (uint8_t *) &thePacket, j * sizeof(DataReading_t));
*len = 0;
}
void releaseESPNOW(uint8_t interface) {
DBG("Releasing ESP-NOW.");
switch (interface) {
case 0:
//espSend(broadcast_mac,ESPNOWGbuffer.buffer,&ESPNOWGbuffer.len);
break;
case 1:
//espSend(ESPNOW1,ESPNOW1buffer.buffer,&ESPNOW1buffer.len);
break;
case 2:
//espSend(ESPNOW2,ESPNOW2buffer.buffer,&ESPNOW2buffer.len);
break;
}
}
// void transmitLoRa(uint8_t* mac, DataReading_t * packet, uint8_t len) {
// #ifdef USE_LORA
// DBG("Transmitting LoRa.");
// uint8_t pkt[5 + (len * sizeof(DataReading_t))];
// memcpy(&pkt, mac, 3);
// memcpy(&pkt[3], &selfAddress[4], 2);
// memcpy(&pkt[5], packet, len * sizeof(DataReading_t));
// LoRa.beginPacket();
// LoRa.write((uint8_t*)&pkt, sizeof(pkt));
// LoRa.endPacket();
// #endif
// }
// void LoRaSend(uint8_t *mac,DataReading_t *buffer, uint16_t *len){
// DataReading_t thePacket[espnow_size];
// int j = 0;
// for (int i = 0; i < *len; i++) {
// if ( j > espnow_size) {
// j = 0;
// transmitLoRa(mac, thePacket, j);
// }
// thePacket[j] = buffer[i];
// j++;
// }
// transmitLoRa(broadcast_mac, thePacket, j);
// *len = 0;
// }
// void releaseLoRa(uint8_t interface) {
// #ifdef USE_LORA
// DBG("Releasing LoRa.");
// switch (interface) {
// case 0:
// LoRaSend(broadcast_mac,LORAGbuffer.buffer,&LORAGbuffer.len);
// break;
// case 1:
// LoRaSend(LoRa1,LORA1buffer.buffer,&LORA1buffer.len);
// break;
// case 2:
// LoRaSend(LoRa2,LORA2buffer.buffer,&LORA2buffer.len);
// break;
// }
// #endif
// }
void releaseSerial() {
DBG("Releasing Serial.");
DynamicJsonDocument doc(24576);
for (int i = 0; i < SERIALbuffer.len; i++) {
doc[i]["id"] = SERIALbuffer.buffer[i].id;
doc[i]["type"] = SERIALbuffer.buffer[i].type;
doc[i]["data"] = SERIALbuffer.buffer[i].data;
}
serializeJson(doc, UART_IF);
UART_IF.println();
SERIALbuffer.len = 0;
}
void releaseMQTT() {
#ifdef USE_WIFI
DBG("Releasing MQTT.");
DynamicJsonDocument doc(24576);
for (int i = 0; i < MQTTbuffer.len; i++) {
doc[i]["id"] = MQTTbuffer.buffer[i].id;
doc[i]["type"] = MQTTbuffer.buffer[i].type;
doc[i]["data"] = MQTTbuffer.buffer[i].data;
}
String outgoingString;
serializeJson(doc, outgoingString);
client.publish(TOPIC_DATA, (char*) outgoingString.c_str());
MQTTbuffer.len = 0;
#endif
}
void reconnect() {
#ifdef USE_WIFI
// Loop until reconnected
while (!client.connected()) {
// Attempt to connect
if (client.connect("FDRS_GATEWAY")) {
// Subscribe
client.subscribe(TOPIC_COMMAND);
break;
}
DBG("Connecting MQTT.");
delay(5000);
}
#endif
}
FDRSGateWayBase::FDRSGateWayBase(uint32_t send_delay): _send_delay(send_delay){
_object_list.push_back(this);
}
FDRSGateWayBase::~FDRSGateWayBase(){
if(_object_list.size() == 0){
return;
}
_object_list.erase(std::find(_object_list.begin(),_object_list.end(),this));
}
void FDRSGateWayBase::release(void){
// FDRSGateWayBase::_data;
// FDRSGateWayBase::_object_list;
for(int i =0; i < _object_list.size();i++){
_object_list[i]->send(_data);
}
}
void FDRSGateWayBase::add_data(DataReading_t *data){
_data.push_back(*data);
}
ESP_FDRSGateWay::ESP_FDRSGateWay(uint8_t broadcast_mac[6],uint8_t inturnal_mac[5], uint32_t send_delay) : FDRSGateWayBase(send_delay){
memcpy(_broadcast_mac,broadcast_mac,6);
memcpy(_inturnal_mac,inturnal_mac,6);
}
void ESP_FDRSGateWay::init(void){
#if defined(ESP8266)
wifi_set_macaddr(STATION_IF, _inturnal_mac);
#endif
#if defined(ESP32)
esp_wifi_set_mac(WIFI_IF_STA, &_inturnal_mac[0]);
#endif
ESP_FDRSGateWay::setup();
#if defined(ESP32)
esp_now_peer_info_t peerInfo;
peerInfo.channel = 0;
peerInfo.encrypt = false;
// Register first peer
memcpy(peerInfo.peer_addr, _broadcast_mac, 6);
if (esp_now_add_peer(&peerInfo) != ESP_OK) {
DBG("Failed to add peer bcast");
return;
}
#endif
}
void ESP_FDRSGateWay::setup(void){
if(is_init){
return;
}
is_init = true;
WiFi.mode(WIFI_STA);
WiFi.disconnect();
#if defined(ESP8266)
if (esp_now_init() != 0) {
return;
}
esp_now_set_self_role(ESP_NOW_ROLE_COMBO);
esp_now_register_send_cb(ESP8266OnDataSent);
esp_now_register_recv_cb(ESP8266OnDataRecv);
#endif
#if defined(ESP32)
if(esp_now_init() != ESP_OK) {
DBG("Error initializing ESP-NOW");
return;
}
esp_now_register_send_cb(ESP32OnDataSent);
esp_now_register_recv_cb(ESP32OnDataRecv);
#endif
DBG("ESP-NOW Initialized.");
}
void ESP_FDRSGateWay::add_peer(uint8_t peer_mac[6]){
#if defined(ESP8266)
esp_now_add_peer(peer_mac, ESP_NOW_ROLE_COMBO, 0, NULL, 0);
#endif
#if defined(ESP32)
esp_now_peer_info_t peerInfo;
peerInfo.channel = 0;
peerInfo.encrypt = false;
memcpy(peerInfo.peer_addr, peer_mac, 6);
if (esp_now_add_peer(&peerInfo) != ESP_OK) {
DBG("Failed to add peer 1");
return;
}
#endif
}
void ESP_FDRSGateWay::send(std::vector<DataReading_t> data){
const uint8_t espnow_size = 250 / sizeof(DataReading_t);
//add unknow peers
uint8_t n = data.size() / espnow_size;
uint8_t m = data.size() % espnow_size;
int i = 0;
DataReading_t buffer1[n];
for(i = 0; i < n; i++){
buffer1[i] = data[i];
}
esp_now_send(mac, (uint8_t *) buffer1, n * sizeof(DataReading_t));
for(i = 0; i < m; i++){
buffer1[i] = data[i + n];
}
esp_now_send(mac, (uint8_t *) buffer1, m * sizeof(DataReading_t));
//do send loop
//remove unknow peers
}