You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Farm-Data-Relay-System/FDRS_Gateway/fdrs_functions.h

895 lines
25 KiB
C

// FARM DATA RELAY SYSTEM
//
// GATEWAY 2.000 Functions
// This is the 'meat and potatoes' of FDRS, and should not be fooled with unless improving/adding features.
// Developed by Timm Bogner (timmbogner@gmail.com)
#ifndef __FDRS_FUNCTIONS_H__
#define __FDRS_FUNCTIONS_H__
enum {
event_clear,
event_espnowg,
event_espnow1,
event_espnow2,
event_serial,
event_mqtt,
event_lorag,
event_lora1,
event_lora2
};
enum crcResult{
CRC_NULL,
CRC_OK,
CRC_BAD,
} returnCRC = CRC_NULL;
enum {
cmd_clear,
cmd_ping,
cmd_add,
cmd_ack
};
#ifdef FDRS_DEBUG
#define DBG(a) (Serial.println(a))
#else
#define DBG(a)
#endif
#if defined (ESP32)
#define UART_IF Serial1
#else
#define UART_IF Serial
#endif
#ifdef FDRS_GLOBALS
#define FDRS_WIFI_SSID GLOBAL_SSID
#define FDRS_WIFI_PASS GLOBAL_PASS
#define FDRS_MQTT_ADDR GLOBAL_MQTT_ADDR
#define FDRS_MQTT_PORT GLOBAL_MQTT_PORT
#define FDRS_MQTT_USER GLOBAL_MQTT_USER
#define FDRS_MQTT_PASS GLOBAL_MQTT_PASS
#define FDRS_BAND GLOBAL_LORA_BAND
#define FDRS_SF GLOBAL_LORA_SF
#else
#define FDRS_WIFI_SSID WIFI_SSID
#define FDRS_WIFI_PASS WIFI_PASS
#define FDRS_MQTT_ADDR MQTT_ADDR
#define FDRS_MQTT_PORT MQTT_PORT
#define FDRS_MQTT_USER MQTT_USER
#define FDRS_MQTT_PASS MQTT_PASS
#define FDRS_BAND LORA_BAND
#define FDRS_SF LORA_SF
#endif
#if defined (MQTT_AUTH) || defined (GLOBAL_MQTT_AUTH)
#define FDRS_MQTT_AUTH
#endif
#define MAC_PREFIX 0xAA, 0xBB, 0xCC, 0xDD, 0xEE // Should only be changed if implementing multiple FDRS systems.
typedef struct __attribute__((packed)) DataReading {
float d;
uint16_t id;
uint8_t t;
} DataReading;
typedef struct __attribute__((packed)) SystemPacket {
uint8_t cmd;
uint32_t param;
} SystemPacket;
const uint8_t espnow_size = 250 / sizeof(DataReading);
const uint8_t lora_size = 256 / sizeof(DataReading);
const uint8_t mac_prefix[] = {MAC_PREFIX};
#ifdef ESP32
esp_now_peer_info_t peerInfo;
#endif
uint8_t broadcast_mac[] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
uint8_t selfAddress[] = {MAC_PREFIX, UNIT_MAC};
uint8_t incMAC[6];
#ifdef ESPNOW1_PEER
uint8_t ESPNOW1[] = {MAC_PREFIX, ESPNOW1_PEER};
#else
uint8_t ESPNOW1[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
#endif
#ifdef ESPNOW2_PEER
uint8_t ESPNOW2[] = {MAC_PREFIX, ESPNOW2_PEER};
#else
uint8_t ESPNOW2[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
#endif
#ifdef USE_LORA
uint16_t LoRa1 = ((mac_prefix[4] << 8) | LORA1_PEER); // Use 2 bytes for LoRa addressing instead of previous 3 bytes
uint16_t LoRa2 = ((mac_prefix[4] << 8) | LORA2_PEER);
//uint16_t LoRaAddress = 0x4200;
uint16_t loraGwAddress = ((selfAddress[4] << 8) | selfAddress[5]); // last 2 bytes of gateway address
uint16_t loraBroadcast = 0xFFFF;
unsigned long receivedLoRaMsg = 0; // Number of total LoRa packets destined for us and of valid size
unsigned long ackOkLoRaMsg = 0; // Number of total LoRa packets with valid CRC
#endif
#if defined (USE_SD_LOG) || defined (USE_FS_LOG)
char logBuffer[512];
uint16_t logBufferPos = 0; // datatype depends on size of sdBuffer
uint32_t timeLOGBUF = 0;
#endif
SystemPacket theCmd;
DataReading theData[256];
uint8_t ln;
uint8_t newData = event_clear;
uint8_t newCmd = cmd_clear;
DataReading ESPNOW1buffer[256];
uint8_t lenESPNOW1 = 0;
uint32_t timeESPNOW1 = 0;
DataReading ESPNOW2buffer[256];
uint8_t lenESPNOW2 = 0;
uint32_t timeESPNOW2 = 0;
DataReading ESPNOWGbuffer[256];
uint8_t lenESPNOWG = 0;
uint32_t timeESPNOWG = 0;
DataReading SERIALbuffer[256];
uint8_t lenSERIAL = 0;
uint32_t timeSERIAL = 0;
DataReading MQTTbuffer[256];
uint8_t lenMQTT = 0;
uint32_t timeMQTT = 0;
DataReading LORAGbuffer[256];
uint8_t lenLORAG = 0;
uint32_t timeLORAG = 0;
DataReading LORA1buffer[256];
uint8_t lenLORA1 = 0;
uint32_t timeLORA1 = 0;
DataReading LORA2buffer[256];
uint8_t lenLORA2 = 0;
uint32_t timeLORA2 = 0;
WiFiClient espClient;
#ifdef USE_LED
CRGB leds[NUM_LEDS];
#endif
#ifdef USE_WIFI
PubSubClient client(espClient);
const char* ssid = FDRS_WIFI_SSID;
const char* password = FDRS_WIFI_PASS;
const char* mqtt_server = FDRS_MQTT_ADDR;
const int mqtt_port = FDRS_MQTT_PORT;
#endif
#ifdef FDRS_MQTT_AUTH
const char* mqtt_user = FDRS_MQTT_USER;
const char* mqtt_pass = FDRS_MQTT_PASS;
#else
const char* mqtt_user = NULL;
const char* mqtt_pass = NULL;
#endif
// Set ESP-NOW send and receive callbacks for either ESP8266 or ESP32
#if defined(ESP8266)
void OnDataSent(uint8_t *mac_addr, uint8_t sendStatus) {
}
void OnDataRecv(uint8_t* mac, uint8_t *incomingData, uint8_t len) {
#elif defined(ESP32)
void OnDataSent(const uint8_t *mac_addr, esp_now_send_status_t status) {
}
void OnDataRecv(const uint8_t * mac, const uint8_t *incomingData, int len) {
#endif
if (len < sizeof(DataReading)) {
DBG("ESP-NOW System Packet");
memcpy(&theCmd, incomingData, sizeof(theCmd));
memcpy(&incMAC, mac, sizeof(incMAC));
return;
}
memcpy(&theData, incomingData, sizeof(theData));
memcpy(&incMAC, mac, sizeof(incMAC));
DBG("Incoming ESP-NOW.");
ln = len / sizeof(DataReading);
if (memcmp(&incMAC, &ESPNOW1, 6) == 0) {
newData = event_espnow1;
return;
}
if (memcmp(&incMAC, &ESPNOW2, 6) == 0) {
newData = event_espnow2;
return;
}
newData = event_espnowg;
}
void getSerial() {
String incomingString = UART_IF.readStringUntil('\n');
DynamicJsonDocument doc(24576);
DeserializationError error = deserializeJson(doc, incomingString);
if (error) { // Test if parsing succeeds.
// DBG("json parse err");
// DBG(incomingString);
return;
} else {
int s = doc.size();
//UART_IF.println(s);
for (int i = 0; i < s; i++) {
theData[i].id = doc[i]["id"];
theData[i].t = doc[i]["type"];
theData[i].d = doc[i]["data"];
}
ln = s;
newData = event_serial;
DBG("Incoming Serial.");
}
}
#if defined (USE_SD_LOG) || defined (USE_FS_LOG)
void releaseLogBuffer()
{
#ifdef USE_SD_LOG
DBG("Releasing Log buffer to SD");
File logfile = SD.open(SD_FILENAME, FILE_WRITE);
logfile.print(logBuffer);
logfile.close();
#endif
#ifdef USE_FS_LOG
DBG("Releasing Log buffer to internal flash.");
File logfile = LittleFS.open(FS_FILENAME, "a");
logfile.print(logBuffer);
logfile.close();
#endif
memset(&(logBuffer[0]), 0, sizeof(logBuffer) / sizeof(char));
logBufferPos = 0;
}
#endif
void sendLog()
{
#if defined (USE_SD_LOG) || defined (USE_FS_LOG)
DBG("Logging to buffer");
for (int i = 0; i < ln; i++)
{
char linebuf[34]; // size depends on resulting length of the formatting string
sprintf(linebuf, "%lld,%d,%d,%g\r\n", time(nullptr), theData[i].id, theData[i].t, theData[i].d);
if (logBufferPos + strlen(linebuf) >= (sizeof(logBuffer) / sizeof(char))) // if buffer would overflow, release first
{
releaseLogBuffer();
}
memcpy(&logBuffer[logBufferPos], linebuf, strlen(linebuf)); //append line to buffer
logBufferPos += strlen(linebuf);
}
#endif
}
void reconnect(short int attempts, bool silent) {
#ifdef USE_WIFI
if (!silent) DBG("Connecting MQTT...");
for (short int i = 1; i <= attempts; i++) {
// Attempt to connect
if (client.connect("FDRS_GATEWAY", mqtt_user, mqtt_pass)) {
// Subscribe
client.subscribe(TOPIC_COMMAND);
if (!silent) DBG(" MQTT Connected");
return;
} else {
if (!silent) {
char msg[23];
sprintf(msg, " Attempt %d/%d", i, attempts);
DBG(msg);
}
if ((attempts = !1)) {
delay(3000);
}
}
}
if (!silent) DBG(" Connecting MQTT failed.");
#endif
}
void reconnect(int attempts) {
reconnect(attempts, false);
}
void mqtt_callback(char* topic, byte * message, unsigned int length) {
String incomingString;
DBG(topic);
for (unsigned int i = 0; i < length; i++) {
incomingString += (char)message[i];
}
StaticJsonDocument<2048> doc;
DeserializationError error = deserializeJson(doc, incomingString);
if (error) { // Test if parsing succeeds.
DBG("json parse err");
DBG(incomingString);
return;
} else {
int s = doc.size();
//UART_IF.println(s);
for (int i = 0; i < s; i++) {
theData[i].id = doc[i]["id"];
theData[i].t = doc[i]["type"];
theData[i].d = doc[i]["data"];
}
ln = s;
newData = event_mqtt;
DBG("Incoming MQTT.");
}
}
void mqtt_publish(const char* payload) {
#ifdef USE_WIFI
if (!client.publish(TOPIC_DATA, payload)) {
DBG(" Error on sending MQTT");
sendLog();
}
#endif
}
void printLoraPacket(uint8_t* p,int size) {
printf("Printing packet of size %d.",size);
for(int i = 0; i < size; i++ ) {
if(i % 2 == 0) printf("\n%02d: ", i);
printf("%02X ", p[i]);
}
printf("\n");
}
void getLoRa() {
#ifdef USE_LORA
int packetSize = LoRa.parsePacket();
if((packetSize - 6) % sizeof(DataReading) == 0 && packetSize > 0) { // packet size should be 6 bytes plus multiple of size of DataReading
uint8_t packet[packetSize];
uint16_t packetCRC = 0x0000; // CRC Extracted from received LoRa packet
uint16_t calcCRC = 0x0000; // CRC calculated from received LoRa packet
uint16_t sourceMAC = 0x0000;
uint16_t destMAC = 0x0000;
LoRa.readBytes((uint8_t *)&packet, packetSize);
ln = (packetSize - 6) / sizeof(DataReading);
destMAC = (packet[0] << 8) | packet[1];
sourceMAC = (packet[2] << 8) | packet[3];
packetCRC = ((packet[packetSize - 2] << 8) | packet[packetSize - 1]);
//DBG("Packet Address: 0x" + String(packet[0],16) + String(packet[1],16) + " Self Address: 0x" + String(selfAddress[4],16) + String(selfAddress[5],16));
if (destMAC == (selfAddress[4] << 8 | selfAddress[5])) { //Check if addressed to this device (2 bytes, bytes 1 and 2)
//printLoraPacket(packet,sizeof(packet));
memcpy(&theData, &packet[4], packetSize - 6); //Split off data portion of packet (N - 6 bytes (6 bytes for headers and CRC))
if(receivedLoRaMsg != 0){ // Avoid divide by 0
DBG("Incoming LoRa. Size: " + String(packetSize) + " Bytes, RSSI: " + String(LoRa.packetRssi()) + "dBi, SNR: " + String(LoRa.packetSnr()) + "dB, PacketCRC: 0x" + String(packetCRC,16) + ", Total LoRa received: " + String(receivedLoRaMsg) + ", CRC Ok Pct " + String((float)ackOkLoRaMsg/receivedLoRaMsg*100) + "%");
}
else {
DBG("Incoming LoRa. Size: " + String(packetSize) + " Bytes, RSSI: " + String(LoRa.packetRssi()) + "dBi, SNR: " + String(LoRa.packetSnr()) + "dB, PacketCRC: 0x" + String(packetCRC,16) + ", Total LoRa received: " + String(receivedLoRaMsg));
}
receivedLoRaMsg++;
// Evaluate CRC
if(packetCRC == 0xFFFF) { // CRC is set that destination does not want ACK so do not send.
DBG("Sensor address 0x" + String(sourceMAC,16) + "(hex) does not want ACK");
ackOkLoRaMsg++;
}
else { // Calculate expected CRC and compare to what is in the packet
for(int i = 0; i < (packetSize - 2); i++) { // Last 2 bytes of packet are the CRC so do not include them in calculation
//printf("CRC: %02X : %d\n",calcCRC, i);
calcCRC = crc16_update(calcCRC, packet[i]);
}
if(calcCRC == packetCRC) {
SystemPacket ACK = { .cmd = cmd_ack, .param = CRC_OK };
DBG("CRC Match, sending ACK packet to sensor 0x" + String(sourceMAC,16) + "(hex)");
transmitLoRa(&sourceMAC, &ACK, 1); // Send ACK back to source
ackOkLoRaMsg++;
}
else {
SystemPacket NAK = { .cmd = cmd_ack, .param = CRC_BAD };
// Send NAK packet to sensor
DBG("CRC Mismatch! Packet CRC is 0x" + String(packetCRC,16) + ", Calculated CRC is 0x" + String(calcCRC,16) + " Sending NAK packet to sensor 0x" + String(sourceMAC,16) + "(hex)");
transmitLoRa(&sourceMAC, &NAK, 1); // CRC did not match so send NAK to source
newData = event_clear; // do not process data as data may be corrupt
return; // Exit function and do not update newData to send invalid data further on
}
}
if (memcmp(&sourceMAC, &LoRa1, 2) == 0) { //Check if it is from a registered sender
newData = event_lora1;
return;
}
if (memcmp(&sourceMAC, &LoRa2, 2) == 0) {
newData = event_lora2;
return;
}
newData = event_lorag;
}
else {
DBG("Incoming LoRa packet of " + String(packetSize) + " bytes received from address 0x" + String(sourceMAC,16) + " destined for node address 0x" + String(destMAC,16));
}
}
else {
if(packetSize != 0) {
DBG("Incoming LoRa packet of " + String(packetSize) + " not processed.");
}
}
#endif
}
#ifdef USE_LORA
void transmitLoRa(uint16_t* destMac, DataReading * packet, uint8_t len) {
uint16_t calcCRC = 0x0000;
uint8_t pkt[6 + (len * sizeof(DataReading))];
pkt[0] = (*destMac >> 8); // high byte of destination MAC
pkt[1] = (*destMac & 0x00FF); // low byte of destination MAC
pkt[2] = selfAddress[4]; // high byte of source MAC (ourselves)
pkt[3] = selfAddress[5]; // low byte of source MAC
memcpy(&pkt[4], packet, len * sizeof(DataReading)); // copy data portion of packet
for(int i = 0; i < (sizeof(pkt) - 2); i++) { // Last 2 bytes are CRC so do not include them in the calculation itself
//printf("CRC: %02X : %d\n",calcCRC, i);
calcCRC = crc16_update(calcCRC, pkt[i]);
}
pkt[(len * sizeof(DataReading) + 4)] = (calcCRC >> 8); // Append calculated CRC to the last 2 bytes of the packet
pkt[(len * sizeof(DataReading) + 5)] = (calcCRC & 0x00FF);
DBG("Transmitting LoRa message of size " + String(sizeof(pkt)) + " bytes with CRC 0x" + String(calcCRC,16) + " to LoRa MAC 0x" + String(*destMac,16));
//printLoraPacket(pkt,sizeof(pkt));
LoRa.beginPacket();
LoRa.write((uint8_t*)&pkt, sizeof(pkt));
LoRa.endPacket();
}
#endif
#ifdef USE_LORA
void transmitLoRa(uint16_t* destMac, SystemPacket * packet, uint8_t len) {
uint16_t calcCRC = 0x0000;
uint8_t pkt[6 + (len * sizeof(SystemPacket))];
pkt[0] = (*destMac >> 8); // high byte of destination MAC
pkt[1] = (*destMac & 0x00FF); // low byte of destination MAC
pkt[2] = selfAddress[4]; // high byte of source MAC (ourselves)
pkt[3] = selfAddress[5]; // low byte of source MAC
memcpy(&pkt[4], packet, len * sizeof(SystemPacket)); // copy data portion of packet
for(int i = 0; i < (sizeof(pkt) - 2); i++) { // Last 2 bytes are CRC so do not include them in the calculation itself
//printf("CRC: %02X : %d\n",calcCRC, i);
calcCRC = crc16_update(calcCRC, pkt[i]);
}
pkt[(len * sizeof(SystemPacket) + 4)] = (calcCRC >> 8); // Append calculated CRC to the last 2 bytes of the packet
pkt[(len * sizeof(SystemPacket) + 5)] = (calcCRC & 0x00FF);
DBG("Transmitting LoRa message of size " + String(sizeof(pkt)) + " bytes with CRC 0x" + String(calcCRC,16) + " to LoRa MAC 0x" + String(*destMac,16));
//printLoraPacket(pkt,sizeof(pkt));
LoRa.beginPacket();
LoRa.write((uint8_t*)&pkt, sizeof(pkt));
LoRa.endPacket();
}
#endif
void sendESPNOW(uint8_t address) {
DBG("Sending ESP-NOW.");
uint8_t temp_peer[] = {MAC_PREFIX, address};
#if defined(ESP32)
esp_now_peer_info_t peerInfo;
peerInfo.ifidx = WIFI_IF_STA;
peerInfo.channel = 0;
peerInfo.encrypt = false;
memcpy(peerInfo.peer_addr, temp_peer, 6);
if (esp_now_add_peer(&peerInfo) != ESP_OK) {
DBG("Failed to add peer");
return;
}
#endif
DataReading thePacket[ln];
int j = 0;
for (int i = 0; i < ln; i++) {
if ( j > espnow_size) {
j = 0;
esp_now_send(temp_peer, (uint8_t *) &thePacket, sizeof(thePacket));
}
thePacket[j] = theData[i];
j++;
}
esp_now_send(temp_peer, (uint8_t *) &thePacket, j * sizeof(DataReading));
esp_now_del_peer(temp_peer);
}
void sendSerial() {
DBG("Sending Serial.");
DynamicJsonDocument doc(24576);
for (int i = 0; i < ln; i++) {
doc[i]["id"] = theData[i].id;
doc[i]["type"] = theData[i].t;
doc[i]["data"] = theData[i].d;
}
serializeJson(doc, UART_IF);
UART_IF.println();
#ifndef ESP8266
serializeJson(doc, Serial);
Serial.println();
#endif
}
void sendMQTT() {
#ifdef USE_WIFI
DBG("Sending MQTT.");
DynamicJsonDocument doc(24576);
for (int i = 0; i < ln; i++) {
doc[i]["id"] = theData[i].id;
doc[i]["type"] = theData[i].t;
doc[i]["data"] = theData[i].d;
}
String outgoingString;
serializeJson(doc, outgoingString);
mqtt_publish((char*) outgoingString.c_str());
#endif
}
void bufferESPNOW(uint8_t interface) {
DBG("Buffering ESP-NOW.");
switch (interface) {
case 0:
for (int i = 0; i < ln; i++) {
ESPNOWGbuffer[lenESPNOWG + i] = theData[i];
}
lenESPNOWG += ln;
break;
case 1:
for (int i = 0; i < ln; i++) {
ESPNOW1buffer[lenESPNOW1 + i] = theData[i];
}
lenESPNOW1 += ln;
break;
case 2:
for (int i = 0; i < ln; i++) {
ESPNOW2buffer[lenESPNOW2 + i] = theData[i];
}
lenESPNOW2 += ln;
break;
}
}
void bufferSerial() {
DBG("Buffering Serial.");
for (int i = 0; i < ln; i++) {
SERIALbuffer[lenSERIAL + i] = theData[i];
}
lenSERIAL += ln;
//UART_IF.println("SENDSERIAL:" + String(lenSERIAL) + " ");
}
void bufferMQTT() {
DBG("Buffering MQTT.");
for (int i = 0; i < ln; i++) {
MQTTbuffer[lenMQTT + i] = theData[i];
}
lenMQTT += ln;
}
//void bufferLoRa() {
// for (int i = 0; i < ln; i++) {
// LORAbuffer[lenLORA + i] = theData[i];
// }
// lenLORA += ln;
//}
void bufferLoRa(uint8_t interface) {
DBG("Buffering LoRa.");
switch (interface) {
case 0:
for (int i = 0; i < ln; i++) {
LORAGbuffer[lenLORAG + i] = theData[i];
}
lenLORAG += ln;
break;
case 1:
for (int i = 0; i < ln; i++) {
LORA1buffer[lenLORA1 + i] = theData[i];
}
lenLORA1 += ln;
break;
case 2:
for (int i = 0; i < ln; i++) {
LORA2buffer[lenLORA2 + i] = theData[i];
}
lenLORA2 += ln;
break;
}
}
void releaseESPNOW(uint8_t interface) {
DBG("Releasing ESP-NOW.");
switch (interface) {
case 0:
{
DataReading thePacket[espnow_size];
int j = 0;
for (int i = 0; i < lenESPNOWG; i++) {
if ( j > espnow_size) {
j = 0;
esp_now_send(broadcast_mac, (uint8_t *) &thePacket, sizeof(thePacket));
}
thePacket[j] = ESPNOWGbuffer[i];
j++;
}
esp_now_send(broadcast_mac, (uint8_t *) &thePacket, j * sizeof(DataReading));
lenESPNOWG = 0;
break;
}
case 1:
{
DataReading thePacket[espnow_size];
int j = 0;
for (int i = 0; i < lenESPNOW1; i++) {
if ( j > espnow_size) {
j = 0;
esp_now_send(ESPNOW1, (uint8_t *) &thePacket, sizeof(thePacket));
}
thePacket[j] = ESPNOW1buffer[i];
j++;
}
esp_now_send(ESPNOW1, (uint8_t *) &thePacket, j * sizeof(DataReading));
lenESPNOW1 = 0;
break;
}
case 2:
{
DataReading thePacket[espnow_size];
int j = 0;
for (int i = 0; i < lenESPNOW2; i++) {
if ( j > espnow_size) {
j = 0;
esp_now_send(ESPNOW2, (uint8_t *) &thePacket, sizeof(thePacket));
}
thePacket[j] = ESPNOW2buffer[i];
j++;
}
esp_now_send(ESPNOW2, (uint8_t *) &thePacket, j * sizeof(DataReading));
lenESPNOW2 = 0;
break;
}
}
}
void releaseLoRa(uint8_t interface) {
#ifdef USE_LORA
DBG("Releasing LoRa.");
switch (interface) {
case 0:
{
DataReading thePacket[lora_size];
int j = 0;
for (int i = 0; i < lenLORAG; i++) {
if ( j > lora_size) {
j = 0;
transmitLoRa(&loraBroadcast, thePacket, j);
}
thePacket[j] = LORAGbuffer[i];
j++;
}
transmitLoRa(&loraBroadcast, thePacket, j);
lenLORAG = 0;
break;
}
case 1:
{
DataReading thePacket[lora_size];
int j = 0;
for (int i = 0; i < lenLORA1; i++) {
if ( j > lora_size) {
j = 0;
transmitLoRa(&LoRa1, thePacket, j);
}
thePacket[j] = LORA1buffer[i];
j++;
}
transmitLoRa(&LoRa1, thePacket, j);
lenLORA1 = 0;
break;
}
case 2:
{
DataReading thePacket[lora_size];
int j = 0;
for (int i = 0; i < lenLORA2; i++) {
if ( j > lora_size) {
j = 0;
transmitLoRa(&LoRa2, thePacket, j);
}
thePacket[j] = LORA2buffer[i];
j++;
}
transmitLoRa(&LoRa2, thePacket, j);
lenLORA2 = 0;
break;
}
}
#endif
}
void releaseSerial() {
DBG("Releasing Serial.");
DynamicJsonDocument doc(24576);
for (int i = 0; i < lenSERIAL; i++) {
doc[i]["id"] = SERIALbuffer[i].id;
doc[i]["type"] = SERIALbuffer[i].t;
doc[i]["data"] = SERIALbuffer[i].d;
}
serializeJson(doc, UART_IF);
UART_IF.println();
lenSERIAL = 0;
}
void releaseMQTT() {
#ifdef USE_WIFI
DBG("Releasing MQTT.");
DynamicJsonDocument doc(24576);
for (int i = 0; i < lenMQTT; i++) {
doc[i]["id"] = MQTTbuffer[i].id;
doc[i]["type"] = MQTTbuffer[i].t;
doc[i]["data"] = MQTTbuffer[i].d;
}
String outgoingString;
serializeJson(doc, outgoingString);
mqtt_publish((char*) outgoingString.c_str());
lenMQTT = 0;
#endif
}
void begin_espnow() {
DBG("Initializing ESP-NOW!");
WiFi.mode(WIFI_STA);
WiFi.disconnect();
// Init ESP-NOW for either ESP8266 or ESP32 and set MAC address
#if defined(ESP8266)
wifi_set_macaddr(STATION_IF, selfAddress);
if (esp_now_init() != 0) {
return;
}
esp_now_set_self_role(ESP_NOW_ROLE_COMBO);
esp_now_register_send_cb(OnDataSent);
esp_now_register_recv_cb(OnDataRecv);
// Register peers
//#ifdef ESPNOW1_PEER
// esp_now_add_peer(ESPNOW1, ESP_NOW_ROLE_COMBO, 0, NULL, 0);
//#endif
//#ifdef ESPNOW2_PEER
// esp_now_add_peer(ESPNOW2, ESP_NOW_ROLE_COMBO, 0, NULL, 0);
//#endif
#elif defined(ESP32)
esp_wifi_set_mac(WIFI_IF_STA, &selfAddress[0]);
if (esp_now_init() != ESP_OK) {
DBG("Error initializing ESP-NOW");
return;
}
esp_now_register_send_cb(OnDataSent);
esp_now_register_recv_cb(OnDataRecv);
peerInfo.channel = 0;
peerInfo.encrypt = false;
// Register first peer
memcpy(peerInfo.peer_addr, broadcast_mac, 6);
if (esp_now_add_peer(&peerInfo) != ESP_OK) {
DBG("Failed to add peer bcast");
return;
}
//#ifdef ESPNOW1_PEER
// memcpy(peerInfo.peer_addr, ESPNOW1, 6);
// if (esp_now_add_peer(&peerInfo) != ESP_OK) {
// DBG("Failed to add peer 1");
// return;
// }
//#endif
//#ifdef ESPNOW2_PEER
// memcpy(peerInfo.peer_addr, ESPNOW2, 6);
// if (esp_now_add_peer(&peerInfo) != ESP_OK) {
// DBG("Failed to add peer 2");
// return;
// }
//#endif
#endif //ESP8266
DBG(" ESP-NOW Initialized.");
}
void begin_lora() {
#ifdef USE_LORA
DBG("Initializing LoRa!");
#ifdef ESP32
SPI.begin(SPI_SCK, SPI_MISO, SPI_MOSI);
#endif
LoRa.setPins(LORA_SS, LORA_RST, LORA_DIO0);
if (!LoRa.begin(FDRS_BAND)) {
DBG(" Initialization failed!");
while (1);
}
LoRa.setSpreadingFactor(FDRS_SF);
DBG(" LoRa initialized.");
DBG("LoRa Band: " + String(FDRS_BAND));
DBG("LoRa SF : " + String(FDRS_SF));
#endif //USE_LORA
}
void begin_SD() {
#ifdef USE_SD_LOG
DBG("Initializing SD card...");
#ifdef ESP32
SPI.begin(SCK, MISO, MOSI);
#endif
if (!SD.begin(SD_SS)) {
DBG(" Initialization failed!");
while (1);
} else {
DBG(" SD initialized.");
}
#endif //USE_SD_LOG
}
void begin_FS() {
#ifdef USE_FS_LOG
DBG("Initializing LittleFS...");
if (!LittleFS.begin())
{
DBG(" initialization failed");
while (1);
}
else
{
DBG(" LittleFS initialized");
}
#endif
}
void handleCommands() {
switch (theCmd.cmd) {
case cmd_ping:
DBG("Ping back to sender");
SystemPacket sys_packet;
sys_packet.cmd = cmd_ping;
#if defined(ESP32)
esp_now_peer_info_t peerInfo;
peerInfo.ifidx = WIFI_IF_STA;
peerInfo.channel = 0;
peerInfo.encrypt = false;
memcpy(peerInfo.peer_addr, incMAC, 6);
if (esp_now_add_peer(&peerInfo) != ESP_OK) {
DBG("Failed to add peer");
return;
}
#endif
esp_now_send(incMAC, (uint8_t *) &sys_packet, sizeof(SystemPacket));
esp_now_del_peer(incMAC);
break;
case cmd_add:
DBG("Add sender to peer list (not completed)");
break;
}
theCmd.cmd = cmd_clear;
theCmd.param = 0;
}
// CRC16 from https://github.com/4-20ma/ModbusMaster/blob/3a05ff87677a9bdd8e027d6906dc05ca15ca8ade/src/util/crc16.h#L71
/** @ingroup util_crc16
Processor-independent CRC-16 calculation.
Polynomial: x^16 + x^15 + x^2 + 1 (0xA001)<br>
Initial value: 0xFFFF
This CRC is normally used in disk-drive controllers.
@param uint16_t crc (0x0000..0xFFFF)
@param uint8_t a (0x00..0xFF)
@return calculated CRC (0x0000..0xFFFF)
*/
static uint16_t crc16_update(uint16_t crc, uint8_t a)
{
int i;
crc ^= a;
for (i = 0; i < 8; ++i)
{
if (crc & 1)
crc = (crc >> 1) ^ 0xA001;
else
crc = (crc >> 1);
}
return crc;
}
#endif //__FDRS_FUNCTIONS_H__