lora compiles

This commit is contained in:
DevilBinder 2022-06-24 17:40:06 +02:00
parent 3663c9db26
commit e1c59038c7
8 changed files with 448 additions and 938 deletions

View File

@ -32,10 +32,11 @@
#define USE_WIFI
#define ESPNOW_PEER_1 0x0E // ESPNOW1 Address
#define ESPNOW_PEER_2 0x0F // ESPNOW2 Address
#ifdef USE_LED
CRGB leds[NUM_LEDS];
#endif
uint8_t broadcast_mac[6] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
uint8_t selfAddress[6] = {MAC_PREFIX, UNIT_MAC};
@ -51,16 +52,27 @@ uint8_t ESPNOW2[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
#endif
MQTT_FDRSGateWay MQTT(1000,WIFI_SSID,WIFI_PASS,MQTT_ADDR,MQTT_PORT);
#ifdef LORA_PEER_1
uint8_t LoRa1[6] = {MAC_PREFIX, LORA_PEER_1};
#endif
ESP_FDRSGateWay ESPNow(broadcast_mac,selfAddress,1000);
#ifdef LORA_PEER_2
uint8_t LoRa2[6] = {MAC_PREFIX, LORA_PEER_2};
#endif
MQTT_FDRSGateWay MQTT(WIFI_SSID,WIFI_PASS,MQTT_ADDR,MQTT_PORT);
ESP_FDRSGateWay ESPNow;
#if defined(ESP32)
Serial_FDRSGateWay SerialGW(&Serial1,115200,1000);
Serial_FDRSGateWay SerialGW(&Serial1,115200);
#else
Serial_FDRSGateWay SerialGW(&Serial,115200,1000);
Serial_FDRSGateWay SerialGW(&Serial,115200);
#endif
LoRa_FDRSGateWay LoRaGW(MISO,MOSI,SCK,SS,RST,DIO0,BAND,SF);
void setup() {
#ifdef USE_LED
@ -68,10 +80,10 @@ void setup() {
leds[0] = CRGB::Blue;
FastLED.show();
#endif
#ifdef USE_WIFI
MQTT.init();
#else
ESPNow.init();
ESPNow.init(selfAddress);
#ifdef ESPNOW_PEER_1
ESPNow.add_peer(ESPNOW1);
@ -80,84 +92,42 @@ void setup() {
#ifdef ESPNOW_PEER_2
ESPNow.add_peer(ESPNOW2);
#endif
#endif
#if defined(ESP32)
SerialGW.init(SERIAL_8N1,RXD2,TXD2);
#else
SerialGW.init();
#endif
// #ifdef USE_LORA
// DBG("Initializing LoRa!");
// SPI.begin(SCK, MISO, MOSI, SS);
// LoRa.setPins(SS, RST, DIO0);
// if (!LoRa.begin(FDRS_BAND)) {
// while (1);
// }
// LoRa.setSpreadingFactor(FDRS_SF);
// DBG(" LoRa initialized.");
// #endif
//DBG(sizeof(DataReading));
#ifdef USE_LORA
LoRaGW.init(selfAddress);
#endif
#ifdef ESPNOW_PEER_1
ESPNow.add_peer(ESPNOW1);
#endif
#ifdef ESPNOW_PEER_2
ESPNow.add_peer(ESPNOW2);
#endif
}
void loop() {
LoRaGW.get();
SerialGW.get();
ESPNow.release();
#ifdef ESPNOWG_DELAY
if (millis() > timeESPNOWG) {
timeESPNOWG += ESPNOWG_DELAY;
if (lenESPNOWG > 0) releaseESPNOW(0);
}
#endif
#ifdef ESPNOW1_DELAY
if (millis() > timeESPNOW1) {
timeESPNOW1 += ESPNOW1_DELAY;
if (lenESPNOW1 > 0) releaseESPNOW(1);
}
#endif
#ifdef ESPNOW2_DELAY
if (millis() > timeESPNOW2) {
timeESPNOW2 += ESPNOW2_DELAY;
if (lenESPNOW2 > 0) releaseESPNOW(2);
}
#endif
#ifdef SERIAL_DELAY
if (millis() > timeSERIAL) {
timeSERIAL += SERIAL_DELAY;
if (lenSERIAL > 0) releaseSerial();
}
#endif
#ifdef MQTT_DELAY
if (millis() > timeMQTT) {
timeMQTT += MQTT_DELAY;
if (lenMQTT > 0) releaseMQTT();
}
#endif
MQTT.release();
SerialGW.release();
LoRaGW.release();
// #ifdef LORAG_DELAY
// if (millis() > timeLORAG) {
// timeLORAG += LORAG_DELAY;
// if (lenLORAG > 0) releaseLoRa(0);
// }
// #endif
// #ifdef LORA1_DELAY
// if (millis() > timeLORA1) {
// timeLORA1 += LORA1_DELAY;
// if (lenLORA1 > 0) releaseLoRa(1);
// }
// #endif
// #ifdef LORA2_DELAY
// if (millis() > timeLORA2) {
// timeLORA2 += LORA2_DELAY;
// if (lenLORA2 > 0) releaseLoRa(2);
// }
// #endif
// getLoRa();
//It does not matter witch one you call.
//it will clear all the data that has been received.
ESPNow.flush();
MQTT.flush();
SerialGW.flush();
LoRaGW.flush();
}

View File

@ -5,6 +5,7 @@
//#include <fdrs_globals.h> //Uncomment if you install the globals file
#define DEBUG
#define MAC_PREFIX 0xAA, 0xBB, 0xCC, 0xDD, 0xEE // Should only be changed if implementing multiple FDRS systems.
#define UNIT_MAC 0x03 // The address of this gateway
@ -20,8 +21,11 @@
// Peer addresses
#define LORA1_PEER 0x0E // LoRa1 Address
#define LORA2_PEER 0x0F // LoRa2 Address
#define LORA_PEER_1 0x0E // LoRa1 Address
#define LORA_PEER_2 0x0F // LoRa2 Address
#define ESPNOW_PEER_1 0x0C // ESPNOW1 Address
#define ESPNOW_PEER_2 0x0D // ESPNOW2 Address
// Peer Actions
#define ESPNOW1_ACT
@ -34,10 +38,6 @@
#define WIFI_PASS "Your Password"
#define MQTT_ADDR "192.168.0.8"
#define MQTT_PORT 1883
// MQTT Topics
#define TOPIC_DATA "fdrs/data"
#define TOPIC_STATUS "fdrs/status"
#define TOPIC_COMMAND "fdrs/command"
//Pins for UART data interface (ESP32 only)
#define RXD2 14
@ -56,16 +56,6 @@
#define BAND 915E6
#define SF 7
// Buffer Delays - in milliseconds
//#define ESPNOW1_DELAY 0
//#define ESPNOW2_DELAY 0
//#define ESPNOWG_DELAY 0
//#define SERIAL_DELAY 0
//#define MQTT_DELAY 0
#define LORAG_DELAY 1000
//#define LORA1_DELAY 1000
//#define LORA2_DELAY 1000
//#define USE_LED //Not yet fully implemented
#define LED_PIN 32
#define NUM_LEDS 4

View File

@ -0,0 +1,133 @@
// FARM DATA RELAY SYSTEM
//
// GATEWAY 2.000
//
// Developed by Timm Bogner (timmbogner@gmail.com) for Sola Gratia Farm in Urbana, Illinois, USA.
//
#include "fdrs_config.h"
#ifdef ESP8266
#include <ESP8266WiFi.h>
#include <espnow.h>
#elif defined(ESP32)
#include <esp_now.h>
#include <WiFi.h>
#include <esp_wifi.h>
#endif
#include <ArduinoJson.h>
#ifdef USE_WIFI
#include <PubSubClient.h>
#endif
#ifdef USE_LORA
#include <LoRa.h>
#endif
#ifdef USE_LED
#include <FastLED.h>
#endif
#include "fdrs_gateway.h"
#include "fdrs_config.h"
#define USE_WIFI
#ifdef USE_LED
CRGB leds[NUM_LEDS];
#endif
uint8_t selfAddress[6] = {MAC_PREFIX, UNIT_MAC};
#ifdef ESPNOW_PEER_1
uint8_t ESPNOW1[] = {MAC_PREFIX, ESPNOW_PEER_1};
#else
uint8_t ESPNOW1[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
#endif
#ifdef ESPNOW_PEER_2
uint8_t ESPNOW2[] = {MAC_PREFIX, ESPNOW_PEER_2};
#else
uint8_t ESPNOW2[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
#endif
#ifdef LORA_PEER_1
uint8_t LoRa1[6] = {MAC_PREFIX, LORA_PEER_1};
#endif
#ifdef LORA_PEER_2
uint8_t LoRa2[6] = {MAC_PREFIX, LORA_PEER_2};
#endif
MQTT_FDRSGateWay MQTT(WIFI_SSID,WIFI_PASS,MQTT_ADDR,MQTT_PORT);
ESP_FDRSGateWay ESPNow;
#if defined(ESP32)
Serial_FDRSGateWay SerialGW(&Serial1,115200);
#else
Serial_FDRSGateWay SerialGW(&Serial,115200);
#endif
LoRa_FDRSGateWay LoRaGW(MISO,MOSI,SCK,SS,RST,DIO0,BAND,SF);
void setup() {
#ifdef USE_LED
FastLED.addLeds<WS2812B, LED_PIN, GRB>(leds, NUM_LEDS);
leds[0] = CRGB::Blue;
FastLED.show();
#endif
MQTT.init();
ESPNow.init(selfAddress);
#ifdef ESPNOW_PEER_1
ESPNow.add_peer(ESPNOW1);
#endif
#ifdef ESPNOW_PEER_2
ESPNow.add_peer(ESPNOW2);
#endif
#if defined(ESP32)
SerialGW.init(SERIAL_8N1,RXD2,TXD2);
#else
SerialGW.init();
#endif
#ifdef USE_LORA
LoRaGW.init(selfAddress);
#endif
#ifdef ESPNOW_PEER_1
ESPNow.add_peer(ESPNOW1);
#endif
#ifdef ESPNOW_PEER_2
ESPNow.add_peer(ESPNOW2);
#endif
}
void loop() {
LoRaGW.get();
SerialGW.get();
ESPNow.release();
MQTT.release();
SerialGW.release();
LoRaGW.release();
//It does not matter witch one you call.
//it will clear all the data that has been received.
ESPNow.flush();
MQTT.flush();
SerialGW.flush();
LoRaGW.flush();
}

View File

@ -0,0 +1,61 @@
// FARM DATA RELAY SYSTEM
//
// GATEWAY 2.000 Configuration
//#include <fdrs_globals.h> //Uncomment if you install the globals file
#define DEBUG
#define MAC_PREFIX 0xAA, 0xBB, 0xCC, 0xDD, 0xEE // Should only be changed if implementing multiple FDRS systems.
#define UNIT_MAC 0x03 // The address of this gateway
//Actions -- Define what happens when a packet arrives at each interface:
//Current function options are: sendESPNOW(MAC), sendSerial(), sendMQTT(), bufferESPNOW(interface), bufferSerial(), and bufferLoRa(interface).
#define SERIAL_ACT
#define MQTT_ACT
#define LORAG_ACT
//#define USE_LORA
//#define USE_WIFI //Used only for MQTT gateway
// Peer addresses
#define LORA_PEER_1 0x0E // LoRa1 Address
#define LORA_PEER_2 0x0F // LoRa2 Address
#define ESPNOW_PEER_1 0x0C // ESPNOW1 Address
#define ESPNOW_PEER_2 0x0D // ESPNOW2 Address
// Peer Actions
#define ESPNOW1_ACT
#define ESPNOW2_ACT
#define LORA1_ACT
#define LORA2_ACT
//WiFi and MQTT Credentials -- Needed only for MQTT gateway
#define WIFI_SSID "Your SSID"
#define WIFI_PASS "Your Password"
#define MQTT_ADDR "192.168.0.8"
#define MQTT_PORT 1883
//Pins for UART data interface (ESP32 only)
#define RXD2 14
#define TXD2 15
//LoRa Configuration -- Needed only if using LoRa
#define SCK 5
#define MISO 19
#define MOSI 27
#define SS 18
#define RST 14
#define DIO0 26
//433E6 for Asia
//866E6 for Europe
//915E6 for North America
#define BAND 915E6
#define SF 7
//#define USE_LED //Not yet fully implemented
#define LED_PIN 32
#define NUM_LEDS 4

View File

@ -1,549 +0,0 @@
#ifdef DEBUG
#define DBG(a) (Serial.println(a))
#else
#define DBG(a)
#endif
#if defined (ESP32)
#define UART_IF Serial1
#else
#define UART_IF Serial
#endif
#ifdef GLOBALS
#define FDRS_WIFI_SSID GLOBAL_SSID
#define FDRS_WIFI_PASS GLOBAL_PASS
#define FDRS_MQTT_ADDR GLOBAL_MQTT_ADDR
#define FDRS_BAND GLOBAL_BAND
#define FDRS_SF GLOBAL_SF
#else
#define FDRS_WIFI_SSID WIFI_SSID
#define FDRS_WIFI_PASS WIFI_PASS
#define FDRS_MQTT_ADDR MQTT_ADDR
#define FDRS_BAND BAND
#define FDRS_SF SF
#endif
#define MAC_PREFIX 0xAA, 0xBB, 0xCC, 0xDD, 0xEE // Should only be changed if implementing multiple FDRS systems.
typedef struct __attribute__((packed)) DataReading {
float d;
uint16_t id;
uint8_t t;
} DataReading;
const uint8_t espnow_size = 250 / sizeof(DataReading);
const uint8_t lora_size = 256 / sizeof(DataReading);
const uint8_t mac_prefix[] = {MAC_PREFIX};
#ifdef ESP32
esp_now_peer_info_t peerInfo;
#endif
uint8_t broadcast_mac[] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
uint8_t selfAddress[] = {MAC_PREFIX, UNIT_MAC};
uint8_t incMAC[6];
#ifdef ESPNOW1_PEER
uint8_t ESPNOW1[] = {MAC_PREFIX, ESPNOW1_PEER};
#else
uint8_t ESPNOW1[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
#endif
#ifdef ESPNOW2_PEER
uint8_t ESPNOW2[] = {MAC_PREFIX, ESPNOW2_PEER};
#else
uint8_t ESPNOW2[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
#endif
#ifdef USE_LORA
uint8_t LoRa1[] = {mac_prefix[3], mac_prefix[4], LORA1_PEER};
uint8_t LoRa2[] = {mac_prefix[3], mac_prefix[4], LORA2_PEER};
//uint8_t LoRaAddress[] = {0x42, 0x00};
#endif
DataReading theData[256];
uint8_t ln;
uint8_t newData = 0;
DataReading ESPNOW1buffer[256];
uint8_t lenESPNOW1 = 0;
uint32_t timeESPNOW1 = 0;
DataReading ESPNOW2buffer[256];
uint8_t lenESPNOW2 = 0;
uint32_t timeESPNOW2 = 0;
DataReading ESPNOWGbuffer[256];
uint8_t lenESPNOWG = 0;
uint32_t timeESPNOWG = 0;
DataReading SERIALbuffer[256];
uint8_t lenSERIAL = 0;
uint32_t timeSERIAL = 0;
DataReading MQTTbuffer[256];
uint8_t lenMQTT = 0;
uint32_t timeMQTT = 0;
DataReading LORAGbuffer[256];
uint8_t lenLORAG = 0;
uint32_t timeLORAG = 0;
DataReading LORA1buffer[256];
uint8_t lenLORA1 = 0;
uint32_t timeLORA1 = 0;
DataReading LORA2buffer[256];
uint8_t lenLORA2 = 0;
uint32_t timeLORA2 = 0;
WiFiClient espClient;
#ifdef USE_LED
CRGB leds[NUM_LEDS];
#endif
#ifdef USE_WIFI
PubSubClient client(espClient);
const char* ssid = FDRS_WIFI_SSID;
const char* password = FDRS_WIFI_PASS;
const char* mqtt_server = FDRS_MQTT_ADDR;
#endif
// Set ESP-NOW send and receive callbacks for either ESP8266 or ESP32
#if defined(ESP8266)
void OnDataSent(uint8_t *mac_addr, uint8_t sendStatus) {
}
void OnDataRecv(uint8_t* mac, uint8_t *incomingData, uint8_t len) {
#elif defined(ESP32)
void OnDataSent(const uint8_t *mac_addr, esp_now_send_status_t status) {
}
void OnDataRecv(const uint8_t * mac, const uint8_t *incomingData, int len) {
#endif
memcpy(&theData, incomingData, sizeof(theData));
memcpy(&incMAC, mac, sizeof(incMAC));
DBG("Incoming ESP-NOW.");
ln = len / sizeof(DataReading);
if (memcmp(&incMAC, &ESPNOW1, 6) == 0) newData = 1;
else if (memcmp(&incMAC, &ESPNOW2, 6) == 0) newData = 2;
else newData = 3;
}
void getSerial() {
String incomingString = UART_IF.readStringUntil('\n');
DynamicJsonDocument doc(24576);
DeserializationError error = deserializeJson(doc, incomingString);
if (error) { // Test if parsing succeeds.
// DBG("json parse err");
// DBG(incomingString);
return;
} else {
int s = doc.size();
//UART_IF.println(s);
for (int i = 0; i < s; i++) {
theData[i].id = doc[i]["id"];
theData[i].t = doc[i]["type"];
theData[i].d = doc[i]["data"];
}
ln = s;
newData = 4;
DBG("Incoming Serial.");
}
}
void mqtt_callback(char* topic, byte * message, unsigned int length) {
String incomingString;
DBG(topic);
for (int i = 0; i < length; i++) {
incomingString += (char)message[i];
}
StaticJsonDocument<2048> doc;
DeserializationError error = deserializeJson(doc, incomingString);
if (error) { // Test if parsing succeeds.
DBG("json parse err");
DBG(incomingString);
return;
} else {
int s = doc.size();
//UART_IF.println(s);
for (int i = 0; i < s; i++) {
theData[i].id = doc[i]["id"];
theData[i].t = doc[i]["type"];
theData[i].d = doc[i]["data"];
}
ln = s;
newData = 5;
DBG("Incoming MQTT.");
}
}
void getLoRa() {
#ifdef USE_LORA
int packetSize = LoRa.parsePacket();
if (packetSize) {
uint8_t packet[packetSize];
uint8_t incLORAMAC[2];
LoRa.readBytes((uint8_t *)&packet, packetSize);
// for (int i = 0; i < packetSize; i++) {
// UART_IF.println(packet[i], HEX);
// }
if (memcmp(&packet, &selfAddress[3], 3) == 0) { //Check if addressed to this device
memcpy(&incLORAMAC, &packet[3], 2); //Split off address portion of packet
memcpy(&theData, &packet[5], packetSize - 5); //Split off data portion of packet
if (memcmp(&incLORAMAC, &LoRa1, 2) == 0) newData = 7; //Check if it is from a registered sender
else if (memcmp(&incLORAMAC, &LoRa2, 2) == 0) newData = 8;
else newData = 6;
ln = (packetSize - 5) / sizeof(DataReading);
newData = 6;
DBG("Incoming LoRa.");
}
}
#endif
}
void sendESPNOW(uint8_t address) {
DBG("Sending ESP-NOW.");
uint8_t NEWPEER[] = {MAC_PREFIX, address};
#if defined(ESP32)
esp_now_peer_info_t peerInfo;
peerInfo.ifidx = WIFI_IF_STA;
peerInfo.channel = 0;
peerInfo.encrypt = false;
memcpy(peerInfo.peer_addr, NEWPEER, 6);
if (esp_now_add_peer(&peerInfo) != ESP_OK) {
DBG("Failed to add peer");
return;
}
#endif
DataReading thePacket[ln];
int j = 0;
for (int i = 0; i < ln; i++) {
if ( j > espnow_size) {
j = 0;
esp_now_send(NEWPEER, (uint8_t *) &thePacket, sizeof(thePacket));
}
thePacket[j] = theData[i];
j++;
}
esp_now_send(NEWPEER, (uint8_t *) &thePacket, j * sizeof(DataReading));
esp_now_del_peer(NEWPEER);
}
void sendSerial() {
DBG("Sending Serial.");
DynamicJsonDocument doc(24576);
for (int i = 0; i < ln; i++) {
doc[i]["id"] = theData[i].id;
doc[i]["type"] = theData[i].t;
doc[i]["data"] = theData[i].d;
}
serializeJson(doc, UART_IF);
UART_IF.println();
#ifndef ESP8266
serializeJson(doc, Serial);
Serial.println();
#endif
}
void sendMQTT() {
#ifdef USE_WIFI
DBG("Sending MQTT.");
DynamicJsonDocument doc(24576);
for (int i = 0; i < ln; i++) {
doc[i]["id"] = theData[i].id;
doc[i]["type"] = theData[i].t;
doc[i]["data"] = theData[i].d;
}
String outgoingString;
serializeJson(doc, outgoingString);
client.publish(TOPIC_DATA, (char*) outgoingString.c_str());
#endif
}
void bufferESPNOW(uint8_t interface) {
DBG("Buffering ESP-NOW.");
switch (interface) {
case 0:
for (int i = 0; i < ln; i++) {
ESPNOWGbuffer[lenESPNOWG + i] = theData[i];
}
lenESPNOWG += ln;
break;
case 1:
for (int i = 0; i < ln; i++) {
ESPNOW1buffer[lenESPNOW1 + i] = theData[i];
}
lenESPNOW1 += ln;
break;
case 2:
for (int i = 0; i < ln; i++) {
ESPNOW2buffer[lenESPNOW2 + i] = theData[i];
}
lenESPNOW2 += ln;
break;
}
}
void bufferSerial() {
DBG("Buffering Serial.");
for (int i = 0; i < ln; i++) {
SERIALbuffer[lenSERIAL + i] = theData[i];
}
lenSERIAL += ln;
//UART_IF.println("SENDSERIAL:" + String(lenSERIAL) + " ");
}
void bufferMQTT() {
DBG("Buffering MQTT.");
for (int i = 0; i < ln; i++) {
MQTTbuffer[lenMQTT + i] = theData[i];
}
lenMQTT += ln;
}
//void bufferLoRa() {
// for (int i = 0; i < ln; i++) {
// LORAbuffer[lenLORA + i] = theData[i];
// }
// lenLORA += ln;
//}
void bufferLoRa(uint8_t interface) {
DBG("Buffering LoRa.");
switch (interface) {
case 0:
for (int i = 0; i < ln; i++) {
LORAGbuffer[lenLORAG + i] = theData[i];
}
lenLORAG += ln;
break;
case 1:
for (int i = 0; i < ln; i++) {
LORA1buffer[lenLORA1 + i] = theData[i];
}
lenLORA1 += ln;
break;
case 2:
for (int i = 0; i < ln; i++) {
LORA2buffer[lenLORA2 + i] = theData[i];
}
lenLORA2 += ln;
break;
}
}
void releaseESPNOW(uint8_t interface) {
DBG("Releasing ESP-NOW.");
switch (interface) {
case 0:
{
DataReading thePacket[espnow_size];
int j = 0;
for (int i = 0; i < lenESPNOWG; i++) {
if ( j > espnow_size) {
j = 0;
esp_now_send(broadcast_mac, (uint8_t *) &thePacket, sizeof(thePacket));
}
thePacket[j] = ESPNOWGbuffer[i];
j++;
}
esp_now_send(broadcast_mac, (uint8_t *) &thePacket, j * sizeof(DataReading));
lenESPNOWG = 0;
break;
}
case 1:
{
DataReading thePacket[espnow_size];
int j = 0;
for (int i = 0; i < lenESPNOW1; i++) {
if ( j > espnow_size) {
j = 0;
esp_now_send(ESPNOW1, (uint8_t *) &thePacket, sizeof(thePacket));
}
thePacket[j] = ESPNOW1buffer[i];
j++;
}
esp_now_send(ESPNOW1, (uint8_t *) &thePacket, j * sizeof(DataReading));
lenESPNOW1 = 0;
break;
}
case 2:
{
DataReading thePacket[espnow_size];
int j = 0;
for (int i = 0; i < lenESPNOW2; i++) {
if ( j > espnow_size) {
j = 0;
esp_now_send(ESPNOW2, (uint8_t *) &thePacket, sizeof(thePacket));
}
thePacket[j] = ESPNOW2buffer[i];
j++;
}
esp_now_send(ESPNOW2, (uint8_t *) &thePacket, j * sizeof(DataReading));
lenESPNOW2 = 0;
break;
}
}
}
#ifdef USE_LORA
void transmitLoRa(uint8_t* mac, DataReading * packet, uint8_t len) {
DBG("Transmitting LoRa.");
uint8_t pkt[5 + (len * sizeof(DataReading))];
memcpy(&pkt, mac, 3);
memcpy(&pkt[3], &selfAddress[4], 2);
memcpy(&pkt[5], packet, len * sizeof(DataReading));
LoRa.beginPacket();
LoRa.write((uint8_t*)&pkt, sizeof(pkt));
LoRa.endPacket();
}
#endif
void releaseLoRa(uint8_t interface) {
#ifdef USE_LORA
DBG("Releasing LoRa.");
switch (interface) {
case 0:
{
DataReading thePacket[lora_size];
int j = 0;
for (int i = 0; i < lenLORAG; i++) {
if ( j > lora_size) {
j = 0;
transmitLoRa(broadcast_mac, thePacket, j);
}
thePacket[j] = LORAGbuffer[i];
j++;
}
transmitLoRa(broadcast_mac, thePacket, j);
lenLORAG = 0;
break;
}
case 1:
{
DataReading thePacket[lora_size];
int j = 0;
for (int i = 0; i < lenLORA1; i++) {
if ( j > lora_size) {
j = 0;
transmitLoRa(LoRa1, thePacket, j);
}
thePacket[j] = LORA1buffer[i];
j++;
}
transmitLoRa(LoRa1, thePacket, j);
lenLORA1 = 0;
break;
}
case 2:
{
DataReading thePacket[lora_size];
int j = 0;
for (int i = 0; i < lenLORA2; i++) {
if ( j > lora_size) {
j = 0;
transmitLoRa(LoRa2, thePacket, j);
}
thePacket[j] = LORA2buffer[i];
j++;
}
transmitLoRa(LoRa2, thePacket, j);
lenLORA2 = 0;
break;
}
}
#endif
}
void releaseSerial() {
DBG("Releasing Serial.");
DynamicJsonDocument doc(24576);
for (int i = 0; i < lenSERIAL; i++) {
doc[i]["id"] = SERIALbuffer[i].id;
doc[i]["type"] = SERIALbuffer[i].t;
doc[i]["data"] = SERIALbuffer[i].d;
}
serializeJson(doc, UART_IF);
UART_IF.println();
lenSERIAL = 0;
}
void releaseMQTT() {
#ifdef USE_WIFI
DBG("Releasing MQTT.");
DynamicJsonDocument doc(24576);
for (int i = 0; i < lenMQTT; i++) {
doc[i]["id"] = MQTTbuffer[i].id;
doc[i]["type"] = MQTTbuffer[i].t;
doc[i]["data"] = MQTTbuffer[i].d;
}
String outgoingString;
serializeJson(doc, outgoingString);
client.publish(TOPIC_DATA, (char*) outgoingString.c_str());
lenMQTT = 0;
#endif
}
void reconnect() {
#ifdef USE_WIFI
// Loop until reconnected
while (!client.connected()) {
// Attempt to connect
if (client.connect("FDRS_GATEWAY")) {
// Subscribe
client.subscribe(TOPIC_COMMAND);
} else {
DBG("Connecting MQTT.");
delay(5000);
}
}
#endif
}
void begin_espnow() {
DBG("Initializing ESP-NOW!");
WiFi.mode(WIFI_STA);
WiFi.disconnect();
// Init ESP-NOW for either ESP8266 or ESP32 and set MAC address
#if defined(ESP8266)
wifi_set_macaddr(STATION_IF, selfAddress);
if (esp_now_init() != 0) {
return;
}
esp_now_set_self_role(ESP_NOW_ROLE_COMBO);
esp_now_register_send_cb(OnDataSent);
esp_now_register_recv_cb(OnDataRecv);
// Register peers
#ifdef ESPNOW1_PEER
esp_now_add_peer(ESPNOW1, ESP_NOW_ROLE_COMBO, 0, NULL, 0);
#endif
#ifdef ESPNOW2_PEER
esp_now_add_peer(ESPNOW2, ESP_NOW_ROLE_COMBO, 0, NULL, 0);
#endif
#elif defined(ESP32)
esp_wifi_set_mac(WIFI_IF_STA, &selfAddress[0]);
if (esp_now_init() != ESP_OK) {
DBG("Error initializing ESP-NOW");
return;
}
esp_now_register_send_cb(OnDataSent);
esp_now_register_recv_cb(OnDataRecv);
peerInfo.channel = 0;
peerInfo.encrypt = false;
// Register first peer
memcpy(peerInfo.peer_addr, broadcast_mac, 6);
if (esp_now_add_peer(&peerInfo) != ESP_OK) {
DBG("Failed to add peer bcast");
return;
}
#ifdef ESPNOW1_PEER
memcpy(peerInfo.peer_addr, ESPNOW1, 6);
if (esp_now_add_peer(&peerInfo) != ESP_OK) {
DBG("Failed to add peer 1");
return;
}
#endif
#ifdef ESPNOW2_PEER
memcpy(peerInfo.peer_addr, ESPNOW2, 6);
if (esp_now_add_peer(&peerInfo) != ESP_OK) {
DBG("Failed to add peer 2");
return;
}
#endif
#endif
DBG(" ESP-NOW Initialized.");
}

View File

@ -6,19 +6,15 @@
// #define USE_WIFI
std::vector<DataReading_t> FDRSGateWayBase::_data;
std::vector<FDRSGateWayBase*> FDRSGateWayBase::_object_list;
bool ESP_FDRSGateWay::is_init = false;
std::vector<ESP_Peer_t> ESP_FDRSGateWay::peer_list;
std::vector<ESP_Peer_t> ESP_FDRSGateWay::unknow_peer;
std::vector<Peer_t> ESP_FDRSGateWay::peer_list;
std::vector<Peer_t> ESP_FDRSGateWay::unknow_peer;
uint8_t newData = 0;
uint8_t ln = 0;
DataReading_t theData[256];
DataReadingBuffer_t SERIALbuffer;
uint32_t timeSERIAL = 0;
DataReadingBuffer_t MQTTbuffer;
uint32_t timeMQTT = 0;
@ -32,7 +28,6 @@ DataReadingBuffer_t LORA2buffer;
uint32_t timeLORA2 = 0;
// Set ESP-NOW send and receive callbacks for either ESP8266 or ESP32
void ESP_FDRSGateWay::OnDataRecv(uint8_t * mac, const uint8_t *incomingData, int len){
@ -57,7 +52,7 @@ void ESP_FDRSGateWay::OnDataRecv(uint8_t * mac, const uint8_t *incomingData, int
}
}
ESP_Peer_t peer;
Peer_t peer;
peer._copy(mac);
unknow_peer.push_back(peer);
}
@ -82,204 +77,36 @@ void ESP32OnDataRecv(const uint8_t * mac, const uint8_t *incomingData, int len)
}
#endif
FDRSGateWayBase::FDRSGateWayBase(){
// void getLoRa() {
// #ifdef USE_LORA
// int packetSize = LoRa.parsePacket();
// if (packetSize== 0) {
// return;
// }
// uint8_t packet[packetSize];
// uint8_t incLORAMAC[2];
// LoRa.readBytes((uint8_t *)&packet, packetSize);
// // for (int i = 0; i < packetSize; i++) {
// // UART_IF.println(packet[i], HEX);
// // }
// //Check if addressed to this device
// if (memcmp(&packet, &selfAddress[3], 3) != 0) {
// return;
// }
// memcpy(&incLORAMAC, &packet[3], 2); //Split off address portion of packet
// memcpy(&theData, &packet[5], packetSize - 5); //Split off data portion of packet
// //Check if it is from a registered sender
// if(memcmp(&incLORAMAC, &LoRa1, 2) == 0){
// newData = 7;
// }
// else if(memcmp(&incLORAMAC, &LoRa2, 2) == 0){
// newData = 8;
// }
// newData = 6;
// ln = (packetSize - 5) / sizeof(DataReading_t);
// DBG("Incoming LoRa.");
// #endif
// }
// void transmitLoRa(uint8_t* mac, DataReading_t * packet, uint8_t len) {
// #ifdef USE_LORA
// DBG("Transmitting LoRa.");
// uint8_t pkt[5 + (len * sizeof(DataReading_t))];
// memcpy(&pkt, mac, 3);
// memcpy(&pkt[3], &selfAddress[4], 2);
// memcpy(&pkt[5], packet, len * sizeof(DataReading_t));
// LoRa.beginPacket();
// LoRa.write((uint8_t*)&pkt, sizeof(pkt));
// LoRa.endPacket();
// #endif
// }
// void LoRaSend(uint8_t *mac,DataReading_t *buffer, uint16_t *len){
// DataReading_t thePacket[espnow_size];
// int j = 0;
// for (int i = 0; i < *len; i++) {
// if ( j > espnow_size) {
// j = 0;
// transmitLoRa(mac, thePacket, j);
// }
// thePacket[j] = buffer[i];
// j++;
// }
// transmitLoRa(broadcast_mac, thePacket, j);
// *len = 0;
// }
// void releaseLoRa(uint8_t interface) {
// #ifdef USE_LORA
// DBG("Releasing LoRa.");
// switch (interface) {
// case 0:
// LoRaSend(broadcast_mac,LORAGbuffer.buffer,&LORAGbuffer.len);
// break;
// case 1:
// LoRaSend(LoRa1,LORA1buffer.buffer,&LORA1buffer.len);
// break;
// case 2:
// LoRaSend(LoRa2,LORA2buffer.buffer,&LORA2buffer.len);
// break;
// }
// #endif
// }
void bufferLoRa(uint8_t interface) {
DBG("Buffering LoRa.");
switch (interface) {
case 0:
memcpy(&LORAGbuffer.buffer[LORAGbuffer.len],&theData[0],ln);
LORAGbuffer.len += ln;
break;
case 1:
memcpy(&LORA1buffer.buffer[LORA1buffer.len],&theData[0],ln);
LORA1buffer.len += ln;
break;
case 2:
memcpy(&LORA2buffer.buffer[LORA2buffer.len],&theData[0],ln);
LORA2buffer.len += ln;
break;
}
}
void getSerial() {
String incomingString = UART_IF.readStringUntil('\n');
DynamicJsonDocument doc(24576);
DeserializationError error = deserializeJson(doc, incomingString);
// Test if parsing succeeds.
if (error) {
// DBG("json parse err");
// DBG(incomingString);
return;
}
int s = doc.size();
//UART_IF.println(s);
for (int i = 0; i < s; i++) {
theData[i].id = doc[i]["id"];
theData[i].type = doc[i]["type"];
theData[i].data = doc[i]["data"];
}
ln = s;
newData = 4;
DBG("Incoming Serial.");
}
void sendSerial() {
DBG("Sending Serial.");
DynamicJsonDocument doc(24576);
for (int i = 0; i < ln; i++) {
doc[i]["id"] = theData[i].id;
doc[i]["type"] = theData[i].type;
doc[i]["data"] = theData[i].data;
}
serializeJson(doc, UART_IF);
UART_IF.println();
#ifndef ESP8266
serializeJson(doc, Serial);
Serial.println();
#endif
}
void bufferSerial() {
DBG("Buffering Serial.");
memcpy(&SERIALbuffer.buffer[SERIALbuffer.len],&theData[0],ln);
SERIALbuffer.len += ln;
//UART_IF.println("SENDSERIAL:" + String(SERIALbuffer.len) + " ");
}
void releaseSerial() {
DBG("Releasing Serial.");
DynamicJsonDocument doc(24576);
for (int i = 0; i < SERIALbuffer.len; i++) {
doc[i]["id"] = SERIALbuffer.buffer[i].id;
doc[i]["type"] = SERIALbuffer.buffer[i].type;
doc[i]["data"] = SERIALbuffer.buffer[i].data;
}
serializeJson(doc, UART_IF);
UART_IF.println();
SERIALbuffer.len = 0;
}
FDRSGateWayBase::FDRSGateWayBase(uint32_t send_delay): _send_delay(send_delay){
_object_list.push_back(this);
}
FDRSGateWayBase::~FDRSGateWayBase(){
if(_object_list.size() == 0){
return;
}
_object_list.erase(std::find(_object_list.begin(),_object_list.end(),this));
}
void FDRSGateWayBase::release(void){
send(_data);
}
for(int i =0; i < _object_list.size();i++){
_object_list[i]->send(_data);
}
void flush(void){
_data.clear();
}
void FDRSGateWayBase::add_data(DataReading_t *data){
_data.push_back(*data);
}
ESP_FDRSGateWay::ESP_FDRSGateWay(uint8_t broadcast_mac[6],uint8_t inturnal_mac[5], uint32_t send_delay) :
FDRSGateWayBase(send_delay)
ESP_FDRSGateWay::ESP_FDRSGateWay(void)
{
memcpy(_broadcast_mac,broadcast_mac,6);
memcpy(_inturnal_mac,inturnal_mac,6);
memset(_broadcast_mac,0xFF,6);
memset(_inturnal_mac,0,6);
}
void ESP_FDRSGateWay::init(void){
void ESP_FDRSGateWay::init(uint8_t inturnal_mac[5]){
memcpy(_inturnal_mac,inturnal_mac,6);
#if defined(ESP8266)
wifi_set_macaddr(STATION_IF, _inturnal_mac);
@ -354,7 +181,7 @@ void ESP_FDRSGateWay::add_peer(uint8_t peer_mac[6]){
list_peer(peer_mac);
ESP_Peer_t peer;
Peer_t peer;
peer._copy(peer_mac);
//esp_now_del_peer(NEWPEER);
@ -369,9 +196,9 @@ void ESP_FDRSGateWay::remove_peer(uint8_t peer_mac[6]){
if(peer_list.size() == 0){
return;
}
ESP_Peer_t peer;
Peer_t peer;
peer._copy(peer_mac);
//peer_list.erase(std::find(peer_list.begin(),peer_list.end(),peer));
peer_list.erase(std::find(peer_list.begin(),peer_list.end(),peer));
}
@ -410,7 +237,6 @@ void ESP_FDRSGateWay::send(std::vector<DataReading_t> data){
}
uint8_t d = data.size() / espnow_size;
uint8_t r = data.size() % espnow_size;
DataReading_t buffer1[d];
for(i = 0; i < d; i++){
@ -419,14 +245,6 @@ void ESP_FDRSGateWay::send(std::vector<DataReading_t> data){
esp_now_send(NULL, (uint8_t *) buffer1, d * sizeof(DataReading_t));
for(i = 0; i < r; i++){
buffer1[i] = data[i + d];
}
esp_now_send(NULL, (uint8_t *) buffer1, r * sizeof(DataReading_t));
for(i = 0; i < unknow_peer.size(); i++){
unlist_peer(unknow_peer[i]._data());
}
@ -435,8 +253,7 @@ void ESP_FDRSGateWay::send(std::vector<DataReading_t> data){
}
MQTT_FDRSGateWay::MQTT_FDRSGateWay(uint32_t send_delay, const char *ssid, const char *password, const char *server,int port):
FDRSGateWayBase(send_delay),
MQTT_FDRSGateWay::MQTT_FDRSGateWay(const char *ssid, const char *password, const char *server,int port):
_ssid(ssid),
_password(password),
_server(server),
@ -539,8 +356,7 @@ void MQTT_FDRSGateWay::send(std::vector<DataReading_t> data) {
}
Serial_FDRSGateWay::Serial_FDRSGateWay(HardwareSerial *serial, uint32_t baud, uint32_t send_delay):
FDRSGateWayBase(send_delay),
Serial_FDRSGateWay::Serial_FDRSGateWay(HardwareSerial *serial, uint32_t baud):
_serial(serial),
_baud(baud)
{
@ -558,7 +374,7 @@ void Serial_FDRSGateWay::init(int mode, int rx_pin, int tx_pin){
#endif
void Serial_FDRSGateWay::pull(void){
//TDDO: this is blocking. Some method of escaping is required.
//TDDO: This is blocking. Some method of escaping is required.
// At the momment we are just hoping we get a \n
String incomingString = _serial->readStringUntil('\n');
DynamicJsonDocument doc(24576);
@ -585,7 +401,6 @@ void Serial_FDRSGateWay::pull(void){
}
void Serial_FDRSGateWay::get(void){
while(_serial->available()){
pull();
@ -603,4 +418,134 @@ void Serial_FDRSGateWay::send(std::vector<DataReading_t> data){
}
serializeJson(doc, *_serial);
_serial->println();
}
}
LoRa_FDRSGateWay::LoRa_FDRSGateWay(uint8_t miso,uint8_t mosi,uint8_t sck, uint8_t ss,uint8_t rst,uint8_t dio0,double band,uint8_t sf):
_miso(miso),
_mosi(mosi),
_sck(sck),
_ss(ss),
_rst(rst),
_dio0(dio0),
_band(band),
_sf(sf)
{
memset(_mac,0,6);
_peer_list.clear();
}
void LoRa_FDRSGateWay::init(uint8_t mac[6]){
memcpy(_mac,mac,6);
DBG("Initializing LoRa!");
SPI.begin(_sck, _miso, _mosi, _ss);
LoRa.setPins(_ss, _rst, _dio0);
if (!LoRa.begin(_band)) {
DBG(" LoRa initialize failed");
return;
}
LoRa.setSpreadingFactor(_sf);
DBG(" LoRa initialized.");
}
void LoRa_FDRSGateWay::add_peer(uint8_t peer_mac[6]){
uint32_t i = 0;
for(uint32_t i = 0; i < _peer_list.size();i++){
if(memcmp(_peer_list[i]._data(),peer_mac,6) == 0){
return;
}
}
Peer_t peer;
peer._copy(peer_mac);
_peer_list.push_back(peer);
}
void LoRa_FDRSGateWay::remove_peer(uint8_t peer_mac[6]){
if(_peer_list.size() == 0){
return;
}
Peer_t peer;
peer._copy(peer_mac);
_peer_list.erase(std::find(_peer_list.begin(),_peer_list.end(),peer));
}
void LoRa_FDRSGateWay::get(void){
int packetSize = LoRa.parsePacket();
if (packetSize== 0) {
return;
}
uint8_t packet[packetSize];
uint8_t incLORAMAC[2];
LoRa.readBytes((uint8_t *)&packet, packetSize);
// for (int i = 0; i < packetSize; i++) {
// UART_IF.println(packet[i], HEX);
// }
//Check if addressed to this device
if (memcmp(&packet, &_mac[3], 3) != 0) {
return;
}
memcpy(&incLORAMAC, &packet[3], 2); //Split off address portion of packet
memcpy(&theData, &packet[5], packetSize - 5); //Split off data portion of packet
//Check if it is from a registered sender
for(uint32_t i = 0; i < _peer_list.size();i++){
if(memcmp(&_peer_list[i].peer[3],incLORAMAC,2) == 0){
DataReading_t data;
uint32_t i = 0;
uint8_t d = packetSize / sizeof(DataReading_t);
memset(&data,0,sizeof(DataReading_t));
for(i = 0; i < d; i++){
memcpy(&data,&theData[i*sizeof(DataReading_t)],sizeof(DataReading_t));
FDRSGateWayBase::add_data(&data);
memset(&data,0,sizeof(DataReading_t));
}
return;
}
}
DBG("Incoming LoRa.");
}
void LoRa_FDRSGateWay::send(std::vector<DataReading_t> data){
const uint8_t espnow_size = 250 / sizeof(DataReading_t);
uint32_t i = 0;
uint8_t d = data.size() / espnow_size;
DataReading_t buffer1[d];
for(i = 0; i < d; i++){
buffer1[i] = data[i];
}
transmit(buffer1, d * sizeof(DataReading_t));
}
void LoRa_FDRSGateWay::transmit(DataReading_t *packet, uint8_t len) {
DBG("Transmitting LoRa.");
uint8_t pkt[5 + (len * sizeof(DataReading_t))];
memcpy(&pkt, _mac, 3);
memcpy(&pkt[3], &_mac[4], 2);
memcpy(&pkt[5], packet, len * sizeof(DataReading_t));
LoRa.beginPacket();
LoRa.write((uint8_t*)&pkt, sizeof(pkt));
LoRa.endPacket();
}

View File

@ -14,116 +14,37 @@
#include "PubSubClient.h"
#include "LoRa.h"
#define USE_LORA
#ifdef DEBUG
#define DBG(a) (Serial.println(a))
#else
#define DBG(a)
#endif
#if defined (ESP32)
#define UART_IF Serial1
#else
#define UART_IF Serial
#endif
#ifdef GLOBALS
#define FDRS_WIFI_SSID GLOBAL_SSID
#define FDRS_WIFI_PASS GLOBAL_PASS
#define FDRS_MQTT_ADDR GLOBAL_MQTT_ADDR
#define FDRS_BAND GLOBAL_BAND
#define FDRS_SF GLOBAL_SF
#else
#define FDRS_WIFI_SSID WIFI_SSID
#define FDRS_WIFI_PASS WIFI_PASS
#define FDRS_MQTT_ADDR MQTT_ADDR
#define FDRS_BAND BAND
#define FDRS_SF SF
#endif
#define USE_LORA
#define MAC_PREFIX 0xAA, 0xBB, 0xCC, 0xDD, 0xEE // Should only be changed if implementing multiple FDRS systems.
const uint8_t espnow_size = 250 / sizeof(DataReading_t);
const uint8_t lora_size = 256 / sizeof(DataReading_t);
// const uint8_t mac_prefix[] = {MAC_PREFIX};
// uint8_t broadcast_mac[] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
// uint8_t selfAddress[] = {MAC_PREFIX, UNIT_MAC};
// uint8_t incMAC[6];
// #ifdef ESPNOW1_PEER
// uint8_t ESPNOW1[] = {MAC_PREFIX, ESPNOW1_PEER};
// #else
// uint8_t ESPNOW1[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
// #endif
// #ifdef ESPNOW2_PEER
// uint8_t ESPNOW2[] = {MAC_PREFIX, ESPNOW2_PEER};
// #else
// uint8_t ESPNOW2[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
// #endif
// #ifdef USE_LORA
// uint8_t LoRa1[] = {mac_prefix[3], mac_prefix[4], LORA1_PEER};
// uint8_t LoRa2[] = {mac_prefix[3], mac_prefix[4], LORA2_PEER};
// //uint8_t LoRaAddress[] = {0x42, 0x00};
// #endif
//WiFiClient espClient;
#ifdef USE_LED
CRGB leds[NUM_LEDS];
#endif
#ifdef USE_WIFI
PubSubClient client(espClient);
const char* ssid = FDRS_WIFI_SSID;
const char* password = FDRS_WIFI_PASS;
const char* mqtt_server = FDRS_MQTT_ADDR;
#endif
void getLoRa();
void bufferLoRa(uint8_t interface);
void transmitLoRa(uint8_t* mac, DataReading_t * packet, uint8_t len);
void releaseLoRa(uint8_t interface);
void getSerial(void);
void sendSerial();
void bufferSerial();
void releaseSerial();
class FDRSGateWayBase{
public:
FDRSGateWayBase(uint32_t send_delay);
FDRSGateWayBase();
~FDRSGateWayBase();
static void add_data(DataReading_t *data);
void release(void);
void flush(void);
private:
uint32_t _send_delay;
static uint32_t peer_id;
static std::vector<DataReading_t> _data;
static std::vector<FDRSGateWayBase*> _object_list;
virtual void send(std::vector<DataReading_t> data) = 0;
};
class ESP_FDRSGateWay: public FDRSGateWayBase{
public:
ESP_FDRSGateWay(uint8_t broadcast_mac[6],uint8_t inturnal_mac[5], uint32_t send_delay);
ESP_FDRSGateWay(void);
void init(void);
void init(uint8_t inturnal_mac[5]);
void add_peer(uint8_t peer_mac[6]);
void remove_peer(uint8_t peer_mac[6]);
@ -134,8 +55,8 @@ private:
static bool is_init;
uint8_t _broadcast_mac[6];
uint8_t _inturnal_mac[6];
static std::vector<ESP_Peer_t> peer_list;
static std::vector<ESP_Peer_t> unknow_peer;
static std::vector<Peer_t> peer_list;
static std::vector<Peer_t> unknow_peer;
static void setup(void);
@ -151,7 +72,7 @@ class MQTT_FDRSGateWay: public FDRSGateWayBase{
public:
MQTT_FDRSGateWay(uint32_t send_delay, const char *ssid, const char *password, const char *server,int port = 1883);
MQTT_FDRSGateWay(const char *ssid, const char *password, const char *server,int port = 1883);
~MQTT_FDRSGateWay(void);
void init(void);
@ -179,7 +100,7 @@ private:
class Serial_FDRSGateWay: public FDRSGateWayBase{
public:
Serial_FDRSGateWay(HardwareSerial *serial, uint32_t baud, uint32_t send_delay);
Serial_FDRSGateWay(HardwareSerial *serial, uint32_t baud);
void init(void);
#if defined(ESP32)
@ -197,5 +118,37 @@ private:
};
class LoRa_FDRSGateWay: public FDRSGateWayBase{
public:
LoRa_FDRSGateWay(uint8_t miso,uint8_t mosi,uint8_t sck, uint8_t ss,uint8_t rst,uint8_t dio0,double band,uint8_t sf);
void init(uint8_t mac[6]);
void get(void);
void add_peer(uint8_t peer_mac[6]);
void remove_peer(uint8_t peer_mac[6]);
private:
uint8_t _mac[6];
uint8_t _miso;
uint8_t _mosi;
uint8_t _sck;
uint8_t _ss;
uint8_t _rst;
uint8_t _dio0;
uint32_t _band;
uint8_t _sf;
std::vector<Peer_t> _peer_list;
void transmit(DataReading_t *packet, uint8_t len);
void send(std::vector<DataReading_t> data) override;
};
#endif

View File

@ -25,10 +25,10 @@ typedef struct DataReadingBuffer_t{
}DataReadingBuffer_t;
typedef struct ESP_Peer_t{
typedef struct Peer_t{
uint8_t peer[6];
ESP_Peer_t(){
Peer_t(){
memset(peer,0,6);
}
@ -39,6 +39,13 @@ typedef struct ESP_Peer_t{
return peer;
}
}ESP_Peer_t;
bool operator==(Peer_t c){
if(memcmp(this->peer,c.peer,6) == 0){
return true;
}
return false;
}
}Peer_t;
#endif