DocsGPT/tests/llm/test_anthropic.py
2023-10-28 19:51:12 +01:00

58 lines
2.1 KiB
Python

import unittest
from unittest.mock import patch, Mock
from application.llm.anthropic import AnthropicLLM
class TestAnthropicLLM(unittest.TestCase):
def setUp(self):
self.api_key = "TEST_API_KEY"
self.llm = AnthropicLLM(api_key=self.api_key)
@patch("application.llm.anthropic.settings")
def test_init_default_api_key(self, mock_settings):
mock_settings.ANTHROPIC_API_KEY = "DEFAULT_API_KEY"
llm = AnthropicLLM()
self.assertEqual(llm.api_key, "DEFAULT_API_KEY")
def test_gen(self):
messages = [
{"content": "context"},
{"content": "question"}
]
mock_response = Mock()
mock_response.completion = "test completion"
with patch.object(self.llm.anthropic.completions, "create", return_value=mock_response) as mock_create:
response = self.llm.gen("test_model", messages)
self.assertEqual(response, "test completion")
prompt_expected = "### Context \n context \n ### Question \n question"
mock_create.assert_called_with(
model="test_model",
max_tokens_to_sample=300,
stream=False,
prompt=f"{self.llm.HUMAN_PROMPT} {prompt_expected}{self.llm.AI_PROMPT}"
)
def test_gen_stream(self):
messages = [
{"content": "context"},
{"content": "question"}
]
mock_responses = [Mock(completion="response_1"), Mock(completion="response_2")]
with patch.object(self.llm.anthropic.completions, "create", return_value=iter(mock_responses)) as mock_create:
responses = list(self.llm.gen_stream("test_model", messages))
self.assertListEqual(responses, ["response_1", "response_2"])
prompt_expected = "### Context \n context \n ### Question \n question"
mock_create.assert_called_with(
model="test_model",
prompt=f"{self.llm.HUMAN_PROMPT} {prompt_expected}{self.llm.AI_PROMPT}",
max_tokens_to_sample=300,
stream=True
)
if __name__ == "__main__":
unittest.main()