DocsGPT/application/vectorstore/faiss.py
2023-10-17 17:35:30 +05:30

46 lines
1.9 KiB
Python

from langchain.vectorstores import FAISS
from application.vectorstore.base import BaseVectorStore
from application.core.settings import settings
class FaissStore(BaseVectorStore):
def __init__(self, path, embeddings_key, docs_init=None):
super().__init__()
self.path = path
embeddings = self._get_embeddings(settings.EMBEDDINGS_NAME, embeddings_key)
if docs_init:
self.docsearch = FAISS.from_documents(
docs_init, embeddings
)
else:
self.docsearch = FAISS.load_local(
self.path, embeddings
)
self.assert_embedding_dimensions(embeddings)
def search(self, *args, **kwargs):
return self.docsearch.similarity_search(*args, **kwargs)
def add_texts(self, *args, **kwargs):
return self.docsearch.add_texts(*args, **kwargs)
def save_local(self, *args, **kwargs):
return self.docsearch.save_local(*args, **kwargs)
def delete_index(self, *args, **kwargs):
return self.docsearch.delete(*args, **kwargs)
def assert_embedding_dimensions(self, embeddings):
"""
Check that the word embedding dimension of the docsearch index matches
the dimension of the word embeddings used
"""
if settings.EMBEDDINGS_NAME == "huggingface_sentence-transformers/all-mpnet-base-v2":
try:
word_embedding_dimension = embeddings.client[1].word_embedding_dimension
except AttributeError as e:
raise AttributeError("word_embedding_dimension not found in embeddings.client[1]") from e
docsearch_index_dimension = self.docsearch.index.d
if word_embedding_dimension != docsearch_index_dimension:
raise ValueError(f"word_embedding_dimension ({word_embedding_dimension}) " +
f"!= docsearch_index_word_embedding_dimension ({docsearch_index_dimension})")