DocsGPT/application/worker.py
Anton Larin 98a97f34f5 fix packaging and imports and introduce tests with pytest.
still issues with celery worker.
2023-08-14 18:20:25 +02:00

97 lines
3.2 KiB
Python

import os
import shutil
import string
import zipfile
from urllib.parse import urljoin
import nltk
import requests
from application.core.settings import settings
from application.parser.file.bulk import SimpleDirectoryReader
from application.parser.open_ai_func import call_openai_api
from application.parser.schema.base import Document
from application.parser.token_func import group_split
try:
nltk.download('punkt', quiet=True)
nltk.download('averaged_perceptron_tagger', quiet=True)
except FileExistsError:
pass
def metadata_from_filename(title):
return {'title': title}
def generate_random_string(length):
return ''.join([string.ascii_letters[i % 52] for i in range(length)])
def ingest_worker(self, directory, formats, name_job, filename, user):
# directory = 'inputs' or 'temp'
# formats = [".rst", ".md"]
input_files = None
recursive = True
limit = None
exclude = True
# name_job = 'job1'
# filename = 'install.rst'
# user = 'local'
sample = False
token_check = True
min_tokens = 150
max_tokens = 1250
full_path = directory + '/' + user + '/' + name_job
# check if API_URL env variable is set
file_data = {'name': name_job, 'file': filename, 'user': user}
response = requests.get(urljoin(settings.API_URL, "/api/download"), params=file_data)
file = response.content
if not os.path.exists(full_path):
os.makedirs(full_path)
with open(full_path + '/' + filename, 'wb') as f:
f.write(file)
# check if file is .zip and extract it
if filename.endswith('.zip'):
with zipfile.ZipFile(full_path + '/' + filename, 'r') as zip_ref:
zip_ref.extractall(full_path)
os.remove(full_path + '/' + filename)
self.update_state(state='PROGRESS', meta={'current': 1})
raw_docs = SimpleDirectoryReader(input_dir=full_path, input_files=input_files, recursive=recursive,
required_exts=formats, num_files_limit=limit,
exclude_hidden=exclude, file_metadata=metadata_from_filename).load_data()
raw_docs = group_split(documents=raw_docs, min_tokens=min_tokens, max_tokens=max_tokens, token_check=token_check)
docs = [Document.to_langchain_format(raw_doc) for raw_doc in raw_docs]
call_openai_api(docs, full_path, self)
self.update_state(state='PROGRESS', meta={'current': 100})
if sample:
for i in range(min(5, len(raw_docs))):
print(raw_docs[i].text)
# get files from outputs/inputs/index.faiss and outputs/inputs/index.pkl
# and send them to the server (provide user and name in form)
file_data = {'name': name_job, 'user': user}
files = {'file_faiss': open(full_path + '/index.faiss', 'rb'),
'file_pkl': open(full_path + '/index.pkl', 'rb')}
response = requests.post(urljoin(settings.API_URL, "/api/upload_index"), files=files, data=file_data)
response = requests.get(urljoin(settings.API_URL, "/api/delete_old?path="))
# delete local
shutil.rmtree(full_path)
return {
'directory': directory,
'formats': formats,
'name_job': name_job,
'filename': filename,
'user': user,
'limited': False
}