mirror of
https://github.com/arc53/DocsGPT
synced 2024-11-09 19:10:53 +00:00
76 lines
2.8 KiB
Python
76 lines
2.8 KiB
Python
import json
|
|
from application.retriever.base import BaseRetriever
|
|
from application.core.settings import settings
|
|
from application.llm.llm_creator import LLMCreator
|
|
from application.utils import count_tokens
|
|
from langchain_community.tools import BraveSearch
|
|
|
|
|
|
|
|
class BraveRetSearch(BaseRetriever):
|
|
|
|
def __init__(self, question, source, chat_history, prompt, chunks=2, gpt_model='docsgpt'):
|
|
self.question = question
|
|
self.source = source
|
|
self.chat_history = chat_history
|
|
self.prompt = prompt
|
|
self.chunks = chunks
|
|
self.gpt_model = gpt_model
|
|
|
|
def _get_data(self):
|
|
if self.chunks == 0:
|
|
docs = []
|
|
else:
|
|
search = BraveSearch.from_api_key(api_key=settings.BRAVE_SEARCH_API_KEY,
|
|
search_kwargs={"count": int(self.chunks)})
|
|
results = search.run(self.question)
|
|
results = json.loads(results)
|
|
|
|
docs = []
|
|
for i in results:
|
|
try:
|
|
title = i['title']
|
|
link = i['link']
|
|
snippet = i['snippet']
|
|
docs.append({"text": snippet, "title": title, "link": link})
|
|
except IndexError:
|
|
pass
|
|
if settings.LLM_NAME == "llama.cpp":
|
|
docs = [docs[0]]
|
|
|
|
return docs
|
|
|
|
def gen(self):
|
|
docs = self._get_data()
|
|
|
|
# join all page_content together with a newline
|
|
docs_together = "\n".join([doc["text"] for doc in docs])
|
|
p_chat_combine = self.prompt.replace("{summaries}", docs_together)
|
|
messages_combine = [{"role": "system", "content": p_chat_combine}]
|
|
for doc in docs:
|
|
yield {"source": doc}
|
|
|
|
if len(self.chat_history) > 1:
|
|
tokens_current_history = 0
|
|
# count tokens in history
|
|
self.chat_history.reverse()
|
|
for i in self.chat_history:
|
|
if "prompt" in i and "response" in i:
|
|
tokens_batch = count_tokens(i["prompt"]) + count_tokens(i["response"])
|
|
if tokens_current_history + tokens_batch < settings.TOKENS_MAX_HISTORY:
|
|
tokens_current_history += tokens_batch
|
|
messages_combine.append({"role": "user", "content": i["prompt"]})
|
|
messages_combine.append({"role": "system", "content": i["response"]})
|
|
messages_combine.append({"role": "user", "content": self.question})
|
|
|
|
llm = LLMCreator.create_llm(settings.LLM_NAME, api_key=settings.API_KEY)
|
|
|
|
completion = llm.gen_stream(model=self.gpt_model,
|
|
messages=messages_combine)
|
|
for line in completion:
|
|
yield {"answer": str(line)}
|
|
|
|
def search(self):
|
|
return self._get_data()
|
|
|