mirror of
https://github.com/arc53/DocsGPT
synced 2024-11-17 21:26:26 +00:00
727 lines
28 KiB
Python
727 lines
28 KiB
Python
import asyncio
|
|
import datetime
|
|
import http.client
|
|
import json
|
|
import logging
|
|
import os
|
|
import platform
|
|
import traceback
|
|
|
|
import dotenv
|
|
import openai
|
|
import requests
|
|
from celery import Celery
|
|
from celery.result import AsyncResult
|
|
from flask import Flask, request, send_from_directory, jsonify, Response, redirect
|
|
from langchain import FAISS
|
|
from langchain import VectorDBQA, Cohere, OpenAI
|
|
from langchain.chains import LLMChain, ConversationalRetrievalChain
|
|
from langchain.chains.conversational_retrieval.prompts import CONDENSE_QUESTION_PROMPT
|
|
from langchain.chains.question_answering import load_qa_chain
|
|
from langchain.chat_models import ChatOpenAI, AzureChatOpenAI
|
|
from langchain.embeddings import (
|
|
OpenAIEmbeddings,
|
|
HuggingFaceHubEmbeddings,
|
|
CohereEmbeddings,
|
|
HuggingFaceInstructEmbeddings,
|
|
)
|
|
from langchain.prompts import PromptTemplate
|
|
from langchain.prompts.chat import (
|
|
ChatPromptTemplate,
|
|
SystemMessagePromptTemplate,
|
|
HumanMessagePromptTemplate,
|
|
AIMessagePromptTemplate,
|
|
)
|
|
from langchain.schema import HumanMessage, AIMessage
|
|
from pymongo import MongoClient
|
|
from werkzeug.utils import secure_filename
|
|
|
|
from application.core.settings import settings
|
|
from application.error import bad_request
|
|
from application.worker import ingest_worker
|
|
from bson.objectid import ObjectId
|
|
|
|
# os.environ["LANGCHAIN_HANDLER"] = "langchain"
|
|
|
|
logger = logging.getLogger(__name__)
|
|
if settings.LLM_NAME == "gpt4":
|
|
gpt_model = 'gpt-4'
|
|
else:
|
|
gpt_model = 'gpt-3.5-turbo'
|
|
|
|
|
|
if settings.SELF_HOSTED_MODEL:
|
|
from langchain.llms import HuggingFacePipeline
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
|
|
|
model_id = settings.LLM_NAME # hf model id (Arc53/docsgpt-7b-falcon, Arc53/docsgpt-14b)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
model = AutoModelForCausalLM.from_pretrained(model_id)
|
|
pipe = pipeline(
|
|
"text-generation", model=model,
|
|
tokenizer=tokenizer, max_new_tokens=2000,
|
|
device_map="auto", eos_token_id=tokenizer.eos_token_id
|
|
)
|
|
hf = HuggingFacePipeline(pipeline=pipe)
|
|
|
|
# Redirect PosixPath to WindowsPath on Windows
|
|
|
|
if platform.system() == "Windows":
|
|
import pathlib
|
|
|
|
temp = pathlib.PosixPath
|
|
pathlib.PosixPath = pathlib.WindowsPath
|
|
|
|
# loading the .env file
|
|
dotenv.load_dotenv()
|
|
|
|
# load the prompts
|
|
current_dir = os.path.dirname(os.path.abspath(__file__))
|
|
with open(os.path.join(current_dir, "prompts", "combine_prompt.txt"), "r") as f:
|
|
template = f.read()
|
|
|
|
with open(os.path.join(current_dir, "prompts", "combine_prompt_hist.txt"), "r") as f:
|
|
template_hist = f.read()
|
|
|
|
with open(os.path.join(current_dir, "prompts", "question_prompt.txt"), "r") as f:
|
|
template_quest = f.read()
|
|
|
|
with open(os.path.join(current_dir, "prompts", "chat_combine_prompt.txt"), "r") as f:
|
|
chat_combine_template = f.read()
|
|
|
|
with open(os.path.join(current_dir, "prompts", "chat_reduce_prompt.txt"), "r") as f:
|
|
chat_reduce_template = f.read()
|
|
|
|
api_key_set = settings.API_KEY is not None
|
|
embeddings_key_set = settings.EMBEDDINGS_KEY is not None
|
|
|
|
app = Flask(__name__)
|
|
app.config["UPLOAD_FOLDER"] = UPLOAD_FOLDER = "inputs"
|
|
app.config["CELERY_BROKER_URL"] = settings.CELERY_BROKER_URL
|
|
app.config["CELERY_RESULT_BACKEND"] = settings.CELERY_RESULT_BACKEND
|
|
app.config["MONGO_URI"] = settings.MONGO_URI
|
|
celery = Celery()
|
|
celery.config_from_object("application.celeryconfig")
|
|
mongo = MongoClient(app.config["MONGO_URI"])
|
|
db = mongo["docsgpt"]
|
|
vectors_collection = db["vectors"]
|
|
conversations_collection = db["conversations"]
|
|
|
|
|
|
async def async_generate(chain, question, chat_history):
|
|
result = await chain.arun({"question": question, "chat_history": chat_history})
|
|
return result
|
|
|
|
|
|
def run_async_chain(chain, question, chat_history):
|
|
loop = asyncio.new_event_loop()
|
|
asyncio.set_event_loop(loop)
|
|
result = {}
|
|
try:
|
|
answer = loop.run_until_complete(async_generate(chain, question, chat_history))
|
|
finally:
|
|
loop.close()
|
|
result["answer"] = answer
|
|
return result
|
|
|
|
|
|
def get_vectorstore(data):
|
|
if "active_docs" in data:
|
|
if data["active_docs"].split("/")[0] == "local":
|
|
if data["active_docs"].split("/")[1] == "default":
|
|
vectorstore = ""
|
|
else:
|
|
vectorstore = "indexes/" + data["active_docs"]
|
|
else:
|
|
vectorstore = "vectors/" + data["active_docs"]
|
|
if data["active_docs"] == "default":
|
|
vectorstore = ""
|
|
else:
|
|
vectorstore = ""
|
|
vectorstore = os.path.join("application", vectorstore)
|
|
return vectorstore
|
|
|
|
|
|
def get_docsearch(vectorstore, embeddings_key):
|
|
if settings.EMBEDDINGS_NAME == "openai_text-embedding-ada-002":
|
|
if is_azure_configured():
|
|
os.environ["OPENAI_API_TYPE"] = "azure"
|
|
openai_embeddings = OpenAIEmbeddings(model=settings.AZURE_EMBEDDINGS_DEPLOYMENT_NAME)
|
|
else:
|
|
openai_embeddings = OpenAIEmbeddings(openai_api_key=embeddings_key)
|
|
docsearch = FAISS.load_local(vectorstore, openai_embeddings)
|
|
elif settings.EMBEDDINGS_NAME == "huggingface_sentence-transformers/all-mpnet-base-v2":
|
|
docsearch = FAISS.load_local(vectorstore, HuggingFaceHubEmbeddings())
|
|
elif settings.EMBEDDINGS_NAME == "huggingface_hkunlp/instructor-large":
|
|
docsearch = FAISS.load_local(vectorstore, HuggingFaceInstructEmbeddings())
|
|
elif settings.EMBEDDINGS_NAME == "cohere_medium":
|
|
docsearch = FAISS.load_local(vectorstore, CohereEmbeddings(cohere_api_key=embeddings_key))
|
|
return docsearch
|
|
|
|
|
|
@celery.task(bind=True)
|
|
def ingest(self, directory, formats, name_job, filename, user):
|
|
resp = ingest_worker(self, directory, formats, name_job, filename, user)
|
|
return resp
|
|
|
|
|
|
@app.route("/")
|
|
def home():
|
|
"""
|
|
The frontend source code lives in the /frontend directory of the repository.
|
|
"""
|
|
if request.remote_addr in ('0.0.0.0', '127.0.0.1', 'localhost', '172.18.0.1'):
|
|
# If users locally try to access DocsGPT running in Docker,
|
|
# they will be redirected to the Frontend application.
|
|
return redirect('http://localhost:5173')
|
|
else:
|
|
# Handle other cases or render the default page
|
|
return 'Welcome to DocsGPT Backend!'
|
|
|
|
|
|
def complete_stream(question, docsearch, chat_history, api_key, conversation_id):
|
|
openai.api_key = api_key
|
|
if is_azure_configured():
|
|
logger.debug("in Azure")
|
|
openai.api_type = "azure"
|
|
openai.api_version = settings.OPENAI_API_VERSION
|
|
openai.api_base = settings.OPENAI_API_BASE
|
|
llm = AzureChatOpenAI(
|
|
openai_api_key=api_key,
|
|
openai_api_base=settings.OPENAI_API_BASE,
|
|
openai_api_version=settings.OPENAI_API_VERSION,
|
|
deployment_name=settings.AZURE_DEPLOYMENT_NAME,
|
|
)
|
|
else:
|
|
logger.debug("plain OpenAI")
|
|
llm = ChatOpenAI(openai_api_key=api_key)
|
|
docs = docsearch.similarity_search(question, k=2)
|
|
# join all page_content together with a newline
|
|
docs_together = "\n".join([doc.page_content for doc in docs])
|
|
p_chat_combine = chat_combine_template.replace("{summaries}", docs_together)
|
|
messages_combine = [{"role": "system", "content": p_chat_combine}]
|
|
source_log_docs = []
|
|
for doc in docs:
|
|
if doc.metadata:
|
|
data = json.dumps({"type": "source", "doc": doc.page_content, "metadata": doc.metadata})
|
|
source_log_docs.append({"title": doc.metadata['title'].split('/')[-1], "text": doc.page_content})
|
|
else:
|
|
data = json.dumps({"type": "source", "doc": doc.page_content})
|
|
source_log_docs.append({"title": doc.page_content, "text": doc.page_content})
|
|
yield f"data:{data}\n\n"
|
|
|
|
if len(chat_history) > 1:
|
|
tokens_current_history = 0
|
|
# count tokens in history
|
|
chat_history.reverse()
|
|
for i in chat_history:
|
|
if "prompt" in i and "response" in i:
|
|
tokens_batch = llm.get_num_tokens(i["prompt"]) + llm.get_num_tokens(i["response"])
|
|
if tokens_current_history + tokens_batch < settings.TOKENS_MAX_HISTORY:
|
|
tokens_current_history += tokens_batch
|
|
messages_combine.append({"role": "user", "content": i["prompt"]})
|
|
messages_combine.append({"role": "system", "content": i["response"]})
|
|
messages_combine.append({"role": "user", "content": question})
|
|
completion = openai.ChatCompletion.create(model=gpt_model, engine=settings.AZURE_DEPLOYMENT_NAME,
|
|
messages=messages_combine, stream=True, max_tokens=500, temperature=0)
|
|
reponse_full = ""
|
|
for line in completion:
|
|
if "content" in line["choices"][0]["delta"]:
|
|
# check if the delta contains content
|
|
data = json.dumps({"answer": str(line["choices"][0]["delta"]["content"])})
|
|
reponse_full += str(line["choices"][0]["delta"]["content"])
|
|
yield f"data: {data}\n\n"
|
|
# save conversation to database
|
|
if conversation_id is not None:
|
|
conversations_collection.update_one(
|
|
{"_id": ObjectId(conversation_id)},
|
|
{"$push": {"queries": {"prompt": question, "response": reponse_full, "sources": source_log_docs}}},
|
|
)
|
|
|
|
else:
|
|
# create new conversation
|
|
# generate summary
|
|
messages_summary = [{"role": "assistant", "content": "Summarise following conversation in no more than 3 "
|
|
"words, respond ONLY with the summary, use the same "
|
|
"language as the system \n\nUser: " + question + "\n\n" +
|
|
"AI: " +
|
|
reponse_full},
|
|
{"role": "user", "content": "Summarise following conversation in no more than 3 words, "
|
|
"respond ONLY with the summary, use the same language as the "
|
|
"system"}]
|
|
completion = openai.ChatCompletion.create(model='gpt-3.5-turbo', engine=settings.AZURE_DEPLOYMENT_NAME,
|
|
messages=messages_summary, max_tokens=30, temperature=0)
|
|
conversation_id = conversations_collection.insert_one(
|
|
{"user": "local",
|
|
"date": datetime.datetime.utcnow(),
|
|
"name": completion["choices"][0]["message"]["content"],
|
|
"queries": [{"prompt": question, "response": reponse_full, "sources": source_log_docs}]}
|
|
).inserted_id
|
|
|
|
# send data.type = "end" to indicate that the stream has ended as json
|
|
data = json.dumps({"type": "id", "id": str(conversation_id)})
|
|
yield f"data: {data}\n\n"
|
|
data = json.dumps({"type": "end"})
|
|
yield f"data: {data}\n\n"
|
|
|
|
|
|
@app.route("/stream", methods=["POST"])
|
|
def stream():
|
|
data = request.get_json()
|
|
# get parameter from url question
|
|
question = data["question"]
|
|
history = data["history"]
|
|
# history to json object from string
|
|
history = json.loads(history)
|
|
conversation_id = data["conversation_id"]
|
|
|
|
# check if active_docs is set
|
|
|
|
if not api_key_set:
|
|
api_key = data["api_key"]
|
|
else:
|
|
api_key = settings.API_KEY
|
|
if not embeddings_key_set:
|
|
embeddings_key = data["embeddings_key"]
|
|
else:
|
|
embeddings_key = settings.EMBEDDINGS_KEY
|
|
if "active_docs" in data:
|
|
vectorstore = get_vectorstore({"active_docs": data["active_docs"]})
|
|
else:
|
|
vectorstore = ""
|
|
docsearch = get_docsearch(vectorstore, embeddings_key)
|
|
|
|
# question = "Hi"
|
|
return Response(
|
|
complete_stream(question, docsearch,
|
|
chat_history=history, api_key=api_key,
|
|
conversation_id=conversation_id), mimetype="text/event-stream"
|
|
)
|
|
|
|
|
|
def is_azure_configured():
|
|
return settings.OPENAI_API_BASE and settings.OPENAI_API_VERSION and settings.AZURE_DEPLOYMENT_NAME
|
|
|
|
|
|
@app.route("/api/answer", methods=["POST"])
|
|
def api_answer():
|
|
data = request.get_json()
|
|
question = data["question"]
|
|
history = data["history"]
|
|
if "conversation_id" not in data:
|
|
conversation_id = None
|
|
else:
|
|
conversation_id = data["conversation_id"]
|
|
print("-" * 5)
|
|
if not api_key_set:
|
|
api_key = data["api_key"]
|
|
else:
|
|
api_key = settings.API_KEY
|
|
if not embeddings_key_set:
|
|
embeddings_key = data["embeddings_key"]
|
|
else:
|
|
embeddings_key = settings.EMBEDDINGS_KEY
|
|
|
|
# use try and except to check for exception
|
|
try:
|
|
# check if the vectorstore is set
|
|
vectorstore = get_vectorstore(data)
|
|
# loading the index and the store and the prompt template
|
|
# Note if you have used other embeddings than OpenAI, you need to change the embeddings
|
|
docsearch = get_docsearch(vectorstore, embeddings_key)
|
|
|
|
q_prompt = PromptTemplate(
|
|
input_variables=["context", "question"], template=template_quest, template_format="jinja2"
|
|
)
|
|
if settings.LLM_NAME == "openai_chat":
|
|
if is_azure_configured():
|
|
logger.debug("in Azure")
|
|
llm = AzureChatOpenAI(
|
|
openai_api_key=api_key,
|
|
openai_api_base=settings.OPENAI_API_BASE,
|
|
openai_api_version=settings.OPENAI_API_VERSION,
|
|
deployment_name=settings.AZURE_DEPLOYMENT_NAME,
|
|
)
|
|
else:
|
|
logger.debug("plain OpenAI")
|
|
llm = ChatOpenAI(openai_api_key=api_key, model_name=gpt_model) # optional parameter: model_name="gpt-4"
|
|
messages_combine = [SystemMessagePromptTemplate.from_template(chat_combine_template)]
|
|
if history:
|
|
tokens_current_history = 0
|
|
# count tokens in history
|
|
history.reverse()
|
|
for i in history:
|
|
if "prompt" in i and "response" in i:
|
|
tokens_batch = llm.get_num_tokens(i["prompt"]) + llm.get_num_tokens(i["response"])
|
|
if tokens_current_history + tokens_batch < settings.TOKENS_MAX_HISTORY:
|
|
tokens_current_history += tokens_batch
|
|
messages_combine.append(HumanMessagePromptTemplate.from_template(i["prompt"]))
|
|
messages_combine.append(AIMessagePromptTemplate.from_template(i["response"]))
|
|
messages_combine.append(HumanMessagePromptTemplate.from_template("{question}"))
|
|
p_chat_combine = ChatPromptTemplate.from_messages(messages_combine)
|
|
elif settings.LLM_NAME == "openai":
|
|
llm = OpenAI(openai_api_key=api_key, temperature=0)
|
|
elif settings.SELF_HOSTED_MODEL:
|
|
llm = hf
|
|
elif settings.LLM_NAME == "cohere":
|
|
llm = Cohere(model="command-xlarge-nightly", cohere_api_key=api_key)
|
|
else:
|
|
raise ValueError("unknown LLM model")
|
|
|
|
if settings.LLM_NAME == "openai_chat":
|
|
question_generator = LLMChain(llm=llm, prompt=CONDENSE_QUESTION_PROMPT)
|
|
doc_chain = load_qa_chain(llm, chain_type="map_reduce", combine_prompt=p_chat_combine)
|
|
chain = ConversationalRetrievalChain(
|
|
retriever=docsearch.as_retriever(k=2),
|
|
question_generator=question_generator,
|
|
combine_docs_chain=doc_chain,
|
|
)
|
|
chat_history = []
|
|
# result = chain({"question": question, "chat_history": chat_history})
|
|
# generate async with async generate method
|
|
result = run_async_chain(chain, question, chat_history)
|
|
elif settings.SELF_HOSTED_MODEL:
|
|
question_generator = LLMChain(llm=llm, prompt=CONDENSE_QUESTION_PROMPT)
|
|
doc_chain = load_qa_chain(llm, chain_type="map_reduce", combine_prompt=p_chat_combine)
|
|
chain = ConversationalRetrievalChain(
|
|
retriever=docsearch.as_retriever(k=2),
|
|
question_generator=question_generator,
|
|
combine_docs_chain=doc_chain,
|
|
)
|
|
chat_history = []
|
|
# result = chain({"question": question, "chat_history": chat_history})
|
|
# generate async with async generate method
|
|
result = run_async_chain(chain, question, chat_history)
|
|
|
|
else:
|
|
qa_chain = load_qa_chain(
|
|
llm=llm, chain_type="map_reduce", combine_prompt=chat_combine_template, question_prompt=q_prompt
|
|
)
|
|
chain = VectorDBQA(combine_documents_chain=qa_chain, vectorstore=docsearch, k=3)
|
|
result = chain({"query": question})
|
|
|
|
print(result)
|
|
|
|
# some formatting for the frontend
|
|
if "result" in result:
|
|
result["answer"] = result["result"]
|
|
result["answer"] = result["answer"].replace("\\n", "\n")
|
|
try:
|
|
result["answer"] = result["answer"].split("SOURCES:")[0]
|
|
except Exception:
|
|
pass
|
|
|
|
sources = docsearch.similarity_search(question, k=2)
|
|
sources_doc = []
|
|
for doc in sources:
|
|
if doc.metadata:
|
|
sources_doc.append({'title': doc.metadata['title'], 'text': doc.page_content})
|
|
else:
|
|
sources_doc.append({'title': doc.page_content, 'text': doc.page_content})
|
|
result['sources'] = sources_doc
|
|
|
|
# generate conversationId
|
|
if conversation_id is not None:
|
|
conversations_collection.update_one(
|
|
{"_id": ObjectId(conversation_id)},
|
|
{"$push": {"queries": {"prompt": question,
|
|
"response": result["answer"], "sources": result['sources']}}},
|
|
)
|
|
|
|
else:
|
|
# create new conversation
|
|
# generate summary
|
|
messages_summary = [AIMessage(content="Summarise following conversation in no more than 3 " +
|
|
"words, respond ONLY with the summary, use the same " +
|
|
"language as the system \n\nUser: " + question + "\n\nAI: " +
|
|
result["answer"]),
|
|
HumanMessage(content="Summarise following conversation in no more than 3 words, " +
|
|
"respond ONLY with the summary, use the same language as the " +
|
|
"system")]
|
|
|
|
|
|
# completion = openai.ChatCompletion.create(model='gpt-3.5-turbo', engine=settings.AZURE_DEPLOYMENT_NAME,
|
|
# messages=messages_summary, max_tokens=30, temperature=0)
|
|
completion = llm.predict_messages(messages_summary)
|
|
conversation_id = conversations_collection.insert_one(
|
|
{"user": "local",
|
|
"date": datetime.datetime.utcnow(),
|
|
"name": completion.content,
|
|
"queries": [{"prompt": question, "response": result["answer"], "sources": result['sources']}]}
|
|
).inserted_id
|
|
|
|
result["conversation_id"] = str(conversation_id)
|
|
|
|
# mock result
|
|
# result = {
|
|
# "answer": "The answer is 42",
|
|
# "sources": ["https://en.wikipedia.org/wiki/42_(number)", "https://en.wikipedia.org/wiki/42_(number)"]
|
|
# }
|
|
return result
|
|
except Exception as e:
|
|
# print whole traceback
|
|
traceback.print_exc()
|
|
print(str(e))
|
|
return bad_request(500, str(e))
|
|
|
|
|
|
@app.route("/api/docs_check", methods=["POST"])
|
|
def check_docs():
|
|
# check if docs exist in a vectorstore folder
|
|
data = request.get_json()
|
|
# split docs on / and take first part
|
|
if data["docs"].split("/")[0] == "local":
|
|
return {"status": "exists"}
|
|
vectorstore = "vectors/" + data["docs"]
|
|
base_path = "https://raw.githubusercontent.com/arc53/DocsHUB/main/"
|
|
if os.path.exists(vectorstore) or data["docs"] == "default":
|
|
return {"status": "exists"}
|
|
else:
|
|
r = requests.get(base_path + vectorstore + "index.faiss")
|
|
|
|
if r.status_code != 200:
|
|
return {"status": "null"}
|
|
else:
|
|
if not os.path.exists(vectorstore):
|
|
os.makedirs(vectorstore)
|
|
with open(vectorstore + "index.faiss", "wb") as f:
|
|
f.write(r.content)
|
|
|
|
# download the store
|
|
r = requests.get(base_path + vectorstore + "index.pkl")
|
|
with open(vectorstore + "index.pkl", "wb") as f:
|
|
f.write(r.content)
|
|
|
|
return {"status": "loaded"}
|
|
|
|
|
|
@app.route("/api/feedback", methods=["POST"])
|
|
def api_feedback():
|
|
data = request.get_json()
|
|
question = data["question"]
|
|
answer = data["answer"]
|
|
feedback = data["feedback"]
|
|
|
|
print("-" * 5)
|
|
print("Question: " + question)
|
|
print("Answer: " + answer)
|
|
print("Feedback: " + feedback)
|
|
print("-" * 5)
|
|
response = requests.post(
|
|
url="https://86x89umx77.execute-api.eu-west-2.amazonaws.com/docsgpt-feedback",
|
|
headers={
|
|
"Content-Type": "application/json; charset=utf-8",
|
|
},
|
|
data=json.dumps({"answer": answer, "question": question, "feedback": feedback}),
|
|
)
|
|
return {"status": http.client.responses.get(response.status_code, "ok")}
|
|
|
|
|
|
@app.route("/api/combine", methods=["GET"])
|
|
def combined_json():
|
|
user = "local"
|
|
"""Provide json file with combined available indexes."""
|
|
# get json from https://d3dg1063dc54p9.cloudfront.net/combined.json
|
|
|
|
data = [
|
|
{
|
|
"name": "default",
|
|
"language": "default",
|
|
"version": "",
|
|
"description": "default",
|
|
"fullName": "default",
|
|
"date": "default",
|
|
"docLink": "default",
|
|
"model": settings.EMBEDDINGS_NAME,
|
|
"location": "local",
|
|
}
|
|
]
|
|
# structure: name, language, version, description, fullName, date, docLink
|
|
# append data from vectors_collection
|
|
for index in vectors_collection.find({"user": user}):
|
|
data.append(
|
|
{
|
|
"name": index["name"],
|
|
"language": index["language"],
|
|
"version": "",
|
|
"description": index["name"],
|
|
"fullName": index["name"],
|
|
"date": index["date"],
|
|
"docLink": index["location"],
|
|
"model": settings.EMBEDDINGS_NAME,
|
|
"location": "local",
|
|
}
|
|
)
|
|
|
|
data_remote = requests.get("https://d3dg1063dc54p9.cloudfront.net/combined.json").json()
|
|
for index in data_remote:
|
|
index["location"] = "remote"
|
|
data.append(index)
|
|
|
|
return jsonify(data)
|
|
|
|
|
|
@app.route("/api/upload", methods=["POST"])
|
|
def upload_file():
|
|
"""Upload a file to get vectorized and indexed."""
|
|
if "user" not in request.form:
|
|
return {"status": "no user"}
|
|
user = secure_filename(request.form["user"])
|
|
if "name" not in request.form:
|
|
return {"status": "no name"}
|
|
job_name = secure_filename(request.form["name"])
|
|
# check if the post request has the file part
|
|
if "file" not in request.files:
|
|
print("No file part")
|
|
return {"status": "no file"}
|
|
file = request.files["file"]
|
|
if file.filename == "":
|
|
return {"status": "no file name"}
|
|
|
|
if file:
|
|
filename = secure_filename(file.filename)
|
|
# save dir
|
|
save_dir = os.path.join(app.config["UPLOAD_FOLDER"], user, job_name)
|
|
# create dir if not exists
|
|
if not os.path.exists(save_dir):
|
|
os.makedirs(save_dir)
|
|
|
|
file.save(os.path.join(save_dir, filename))
|
|
task = ingest.delay("temp", [".rst", ".md", ".pdf", ".txt"], job_name, filename, user)
|
|
# task id
|
|
task_id = task.id
|
|
return {"status": "ok", "task_id": task_id}
|
|
else:
|
|
return {"status": "error"}
|
|
|
|
|
|
@app.route("/api/task_status", methods=["GET"])
|
|
def task_status():
|
|
"""Get celery job status."""
|
|
task_id = request.args.get("task_id")
|
|
task = AsyncResult(task_id)
|
|
task_meta = task.info
|
|
return {"status": task.status, "result": task_meta}
|
|
|
|
|
|
### Backgound task api
|
|
@app.route("/api/upload_index", methods=["POST"])
|
|
def upload_index_files():
|
|
"""Upload two files(index.faiss, index.pkl) to the user's folder."""
|
|
if "user" not in request.form:
|
|
return {"status": "no user"}
|
|
user = secure_filename(request.form["user"])
|
|
if "name" not in request.form:
|
|
return {"status": "no name"}
|
|
job_name = secure_filename(request.form["name"])
|
|
if "file_faiss" not in request.files:
|
|
print("No file part")
|
|
return {"status": "no file"}
|
|
file_faiss = request.files["file_faiss"]
|
|
if file_faiss.filename == "":
|
|
return {"status": "no file name"}
|
|
if "file_pkl" not in request.files:
|
|
print("No file part")
|
|
return {"status": "no file"}
|
|
file_pkl = request.files["file_pkl"]
|
|
if file_pkl.filename == "":
|
|
return {"status": "no file name"}
|
|
|
|
# saves index files
|
|
save_dir = os.path.join("indexes", user, job_name)
|
|
if not os.path.exists(save_dir):
|
|
os.makedirs(save_dir)
|
|
file_faiss.save(os.path.join(save_dir, "index.faiss"))
|
|
file_pkl.save(os.path.join(save_dir, "index.pkl"))
|
|
# create entry in vectors_collection
|
|
vectors_collection.insert_one(
|
|
{
|
|
"user": user,
|
|
"name": job_name,
|
|
"language": job_name,
|
|
"location": save_dir,
|
|
"date": datetime.datetime.now().strftime("%d/%m/%Y %H:%M:%S"),
|
|
"model": settings.EMBEDDINGS_NAME,
|
|
"type": "local",
|
|
}
|
|
)
|
|
return {"status": "ok"}
|
|
|
|
|
|
@app.route("/api/download", methods=["get"])
|
|
def download_file():
|
|
user = secure_filename(request.args.get("user"))
|
|
job_name = secure_filename(request.args.get("name"))
|
|
filename = secure_filename(request.args.get("file"))
|
|
save_dir = os.path.join(app.config["UPLOAD_FOLDER"], user, job_name)
|
|
return send_from_directory(save_dir, filename, as_attachment=True)
|
|
|
|
|
|
@app.route("/api/delete_old", methods=["get"])
|
|
def delete_old():
|
|
"""Delete old indexes."""
|
|
import shutil
|
|
|
|
path = request.args.get("path")
|
|
dirs = path.split("/")
|
|
dirs_clean = []
|
|
for i in range(1, len(dirs)):
|
|
dirs_clean.append(secure_filename(dirs[i]))
|
|
# check that path strats with indexes or vectors
|
|
if dirs[0] not in ["indexes", "vectors"]:
|
|
return {"status": "error"}
|
|
path_clean = "/".join(dirs)
|
|
vectors_collection.delete_one({"location": path})
|
|
try:
|
|
shutil.rmtree(path_clean)
|
|
except FileNotFoundError:
|
|
pass
|
|
return {"status": "ok"}
|
|
|
|
|
|
@app.route("/api/get_conversations", methods=["get"])
|
|
def get_conversations():
|
|
# provides a list of conversations
|
|
conversations = conversations_collection.find().sort("date", -1)
|
|
list_conversations = []
|
|
for conversation in conversations:
|
|
list_conversations.append({"id": str(conversation["_id"]), "name": conversation["name"]})
|
|
|
|
#list_conversations = [{"id": "default", "name": "default"}, {"id": "jeff", "name": "jeff"}]
|
|
|
|
return jsonify(list_conversations)
|
|
|
|
@app.route("/api/get_single_conversation", methods=["get"])
|
|
def get_single_conversation():
|
|
# provides data for a conversation
|
|
conversation_id = request.args.get("id")
|
|
conversation = conversations_collection.find_one({"_id": ObjectId(conversation_id)})
|
|
return jsonify(conversation['queries'])
|
|
|
|
@app.route("/api/delete_conversation", methods=["POST"])
|
|
def delete_conversation():
|
|
# deletes a conversation from the database
|
|
conversation_id = request.args.get("id")
|
|
# write to mongodb
|
|
conversations_collection.delete_one(
|
|
{
|
|
"_id": ObjectId(conversation_id),
|
|
}
|
|
)
|
|
|
|
return {"status": "ok"}
|
|
|
|
|
|
# handling CORS
|
|
@app.after_request
|
|
def after_request(response):
|
|
response.headers.add("Access-Control-Allow-Origin", "*")
|
|
response.headers.add("Access-Control-Allow-Headers", "Content-Type,Authorization")
|
|
response.headers.add("Access-Control-Allow-Methods", "GET,PUT,POST,DELETE,OPTIONS")
|
|
response.headers.add("Access-Control-Allow-Credentials", "true")
|
|
return response
|
|
|
|
|
|
if __name__ == "__main__":
|
|
app.run(debug=True, port=7091)
|