DocsGPT/scripts/parser/open_ai_func.py
2023-02-10 16:10:53 +00:00

44 lines
1.7 KiB
Python

import faiss
import pickle
import tiktoken
from langchain.vectorstores import FAISS
from langchain.embeddings import OpenAIEmbeddings
def num_tokens_from_string(string: str, encoding_name: str) -> int:
# Function to convert string to tokens and estimate user cost.
encoding = tiktoken.get_encoding(encoding_name)
num_tokens = len(encoding.encode(string))
total_price = ((num_tokens/1000) * 0.0004)
return num_tokens, total_price
def call_openai_api(docs):
# Function to create a vector store from the documents and save it to disk.
store = FAISS.from_documents(docs, OpenAIEmbeddings())
faiss.write_index(store.index, "docs.index")
store.index = None
with open("faiss_store.pkl", "wb") as f:
pickle.dump(store, f)
def get_user_permission(docs):
# Function to ask user permission to call the OpenAI api and spend their OpenAI funds.
# Here we convert the docs list to a string and calculate the number of OpenAI tokens the string represents.
#docs_content = (" ".join(docs))
docs_content = ""
for doc in docs:
docs_content += doc.page_content
tokens, total_price = num_tokens_from_string(string=docs_content, encoding_name="cl100k_base")
# Here we print the number of tokens and the approx user cost with some visually appealing formatting.
print(f"Number of Tokens = {format(tokens, ',d')}")
print(f"Approx Cost = ${format(total_price, ',.2f')}")
#Here we check for user permission before calling the API.
user_input = input("Price Okay? (Y/N) \n").lower()
if user_input == "y":
call_openai_api(docs)
elif user_input == "":
call_openai_api(docs)
else:
print("The API was not called. No money was spent.")