DocsGPT/application/llm/huggingface.py
2023-09-27 17:02:47 +01:00

32 lines
1.1 KiB
Python

from application.llm.base import BaseLLM
class HuggingFaceLLM(BaseLLM):
def __init__(self, api_key, llm_name='Arc53/DocsGPT-7B'):
global hf
from langchain.llms import HuggingFacePipeline
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
tokenizer = AutoTokenizer.from_pretrained(llm_name)
model = AutoModelForCausalLM.from_pretrained(llm_name)
pipe = pipeline(
"text-generation", model=model,
tokenizer=tokenizer, max_new_tokens=2000,
device_map="auto", eos_token_id=tokenizer.eos_token_id
)
hf = HuggingFacePipeline(pipeline=pipe)
def gen(self, model, engine, messages, stream=False, **kwargs):
context = messages[0]['content']
user_question = messages[-1]['content']
prompt = f"### Instruction \n {user_question} \n ### Context \n {context} \n ### Answer \n"
result = hf(prompt)
return result.content
def gen_stream(self, model, engine, messages, stream=True, **kwargs):
raise NotImplementedError("HuggingFaceLLM Streaming is not implemented yet.")