mirror of
https://github.com/arc53/DocsGPT
synced 2024-11-16 00:12:46 +00:00
84 lines
3.2 KiB
Python
84 lines
3.2 KiB
Python
"""HTML parser.
|
|
|
|
Contains parser for html files.
|
|
|
|
"""
|
|
import re
|
|
from pathlib import Path
|
|
from typing import Dict, Union
|
|
|
|
from parser.file.base_parser import BaseParser
|
|
|
|
|
|
class HTMLParser(BaseParser):
|
|
"""HTML parser."""
|
|
|
|
def _init_parser(self) -> Dict:
|
|
"""Init parser."""
|
|
return {}
|
|
|
|
def parse_file(self, file: Path, errors: str = "ignore") -> Union[str, list[str]]:
|
|
"""Parse file.
|
|
|
|
Returns:
|
|
Union[str, List[str]]: a string or a List of strings.
|
|
"""
|
|
try:
|
|
from unstructured.partition.html import partition_html
|
|
from unstructured.staging.base import convert_to_isd
|
|
from unstructured.cleaners.core import clean
|
|
except ImportError:
|
|
raise ValueError("unstructured package is required to parse HTML files.")
|
|
|
|
# Using the unstructured library to convert the html to isd format
|
|
# isd sample : isd = [
|
|
# {"text": "My Title", "type": "Title"},
|
|
# {"text": "My Narrative", "type": "NarrativeText"}
|
|
# ]
|
|
with open(file, "r", encoding="utf-8") as fp:
|
|
elements = partition_html(file=fp)
|
|
isd = convert_to_isd(elements)
|
|
|
|
# Removing non ascii charactwers from isd_el['text']
|
|
for isd_el in isd:
|
|
isd_el['text'] = isd_el['text'].encode("ascii", "ignore").decode()
|
|
|
|
# Removing all the \n characters from isd_el['text'] using regex and replace with single space
|
|
# Removing all the extra spaces from isd_el['text'] using regex and replace with single space
|
|
for isd_el in isd:
|
|
isd_el['text'] = re.sub(r'\n', ' ', isd_el['text'], flags=re.MULTILINE | re.DOTALL)
|
|
isd_el['text'] = re.sub(r"\s{2,}", " ", isd_el['text'], flags=re.MULTILINE | re.DOTALL)
|
|
|
|
# more cleaning: extra_whitespaces, dashes, bullets, trailing_punctuation
|
|
for isd_el in isd:
|
|
clean(isd_el['text'], extra_whitespace=True, dashes=True, bullets=True, trailing_punctuation=True)
|
|
|
|
# Creating a list of all the indexes of isd_el['type'] = 'Title'
|
|
title_indexes = [i for i, isd_el in enumerate(isd) if isd_el['type'] == 'Title']
|
|
|
|
# Creating 'Chunks' - List of lists of strings
|
|
# each list starting with isd_el['type'] = 'Title' and all the data till the next 'Title'
|
|
# Each Chunk can be thought of as an individual set of data, which can be sent to the model
|
|
# Where Each Title is grouped together with the data under it
|
|
|
|
Chunks = [[]]
|
|
final_chunks = list(list())
|
|
|
|
for i, isd_el in enumerate(isd):
|
|
if i in title_indexes:
|
|
Chunks.append([])
|
|
Chunks[-1].append(isd_el['text'])
|
|
|
|
# Removing all the chunks with sum of length of all the strings in the chunk < 25
|
|
# TODO: This value can be a user defined variable
|
|
for chunk in Chunks:
|
|
# sum of length of all the strings in the chunk
|
|
sum = 0
|
|
sum += len(str(chunk))
|
|
if sum < 25:
|
|
Chunks.remove(chunk)
|
|
else:
|
|
# appending all the approved chunks to final_chunks as a single string
|
|
final_chunks.append(" ".join([str(item) for item in chunk]))
|
|
return final_chunks
|