DocsGPT/application/vectorstore/mongodb.py

126 lines
4.3 KiB
Python

from application.vectorstore.base import BaseVectorStore
from application.core.settings import settings
from application.vectorstore.document_class import Document
class MongoDBVectorStore(BaseVectorStore):
def __init__(
self,
path: str = "",
embeddings_key: str = "embeddings",
collection: str = "documents",
index_name: str = "vector_search_index",
text_key: str = "text",
embedding_key: str = "embedding",
database: str = "docsgpt",
):
self._index_name = index_name
self._text_key = text_key
self._embedding_key = embedding_key
self._embeddings_key = embeddings_key
self._mongo_uri = settings.MONGO_URI
self._path = path.replace("application/indexes/", "").rstrip("/")
self._embedding = self._get_embeddings(settings.EMBEDDINGS_NAME, embeddings_key)
try:
import pymongo
except ImportError:
raise ImportError(
"Could not import pymongo python package. "
"Please install it with `pip install pymongo`."
)
self._client = pymongo.MongoClient(self._mongo_uri)
self._database = self._client[database]
self._collection = self._database[collection]
def search(self, question, k=2, *args, **kwargs):
query_vector = self._embedding.embed_query(question)
pipeline = [
{
"$vectorSearch": {
"queryVector": query_vector,
"path": self._embedding_key,
"limit": k,
"numCandidates": k * 10,
"index": self._index_name,
"filter": {
"store": {"$eq": self._path}
}
}
}
]
cursor = self._collection.aggregate(pipeline)
results = []
for doc in cursor:
text = doc[self._text_key]
doc.pop("_id")
doc.pop(self._text_key)
doc.pop(self._embedding_key)
metadata = doc
results.append(Document(text, metadata))
return results
def _insert_texts(self, texts, metadatas):
if not texts:
return []
embeddings = self._embedding.embed_documents(texts)
to_insert = [
{self._text_key: t, self._embedding_key: embedding, **m}
for t, m, embedding in zip(texts, metadatas, embeddings)
]
# insert the documents in MongoDB Atlas
insert_result = self._collection.insert_many(to_insert)
return insert_result.inserted_ids
def add_texts(self,
texts,
metadatas = None,
ids = None,
refresh_indices = True,
create_index_if_not_exists = True,
bulk_kwargs = None,
**kwargs,):
#dims = self._embedding.client[1].word_embedding_dimension
# # check if index exists
# if create_index_if_not_exists:
# # check if index exists
# info = self._collection.index_information()
# if self._index_name not in info:
# index_mongo = {
# "fields": [{
# "type": "vector",
# "path": self._embedding_key,
# "numDimensions": dims,
# "similarity": "cosine",
# },
# {
# "type": "filter",
# "path": "store"
# }]
# }
# self._collection.create_index(self._index_name, index_mongo)
batch_size = 100
_metadatas = metadatas or ({} for _ in texts)
texts_batch = []
metadatas_batch = []
result_ids = []
for i, (text, metadata) in enumerate(zip(texts, _metadatas)):
texts_batch.append(text)
metadatas_batch.append(metadata)
if (i + 1) % batch_size == 0:
result_ids.extend(self._insert_texts(texts_batch, metadatas_batch))
texts_batch = []
metadatas_batch = []
if texts_batch:
result_ids.extend(self._insert_texts(texts_batch, metadatas_batch))
return result_ids
def delete_index(self, *args, **kwargs):
self._collection.delete_many({"store": self._path})