DocsGPT/scripts/parser/py2doc.py
2023-02-22 21:19:13 +04:00

155 lines
5.6 KiB
Python

from pathlib import Path
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
import dotenv
import ast
import typer
import tiktoken
dotenv.load_dotenv()
def get_functions(source_code):
tree = ast.parse(source_code)
functions = {}
for node in tree.body:
if isinstance(node, ast.FunctionDef):
functions[node.name] = ast.unparse(node)
return functions
def get_functions_names(node):
functions = []
for child in node.body:
if isinstance(child, ast.FunctionDef):
functions.append(child.name)
return functions
def get_classes(source_code):
tree = ast.parse(source_code)
classes = {}
for node in tree.body:
if isinstance(node, ast.ClassDef):
classes[node.name] = get_functions_names(node)
return classes
def get_functions_in_class(source_code, class_name):
tree = ast.parse(source_code)
functions = []
for node in tree.body:
if isinstance(node, ast.ClassDef):
if node.name == class_name:
for function in node.body:
if isinstance(function, ast.FunctionDef):
functions.append(function.name)
return functions
def parse_functions(functions_dict):
c1 = len(functions_dict)
c2 = 0
for source, functions in functions_dict.items():
c2 += 1
print(f"Processing file {c2}/{c1}")
f1 = len(functions)
f2 = 0
source_w = source.replace("inputs/", "")
source_w = source_w.replace(".py", ".md")
# this is how we check subfolders
if "/" in source_w:
subfolders = source_w.split("/")
subfolders = subfolders[:-1]
subfolders = "/".join(subfolders)
if not Path(f"outputs/{subfolders}").exists():
Path(f"outputs/{subfolders}").mkdir(parents=True)
for name, function in functions.items():
f2 += 1
print(f"Processing function {f2}/{f1}")
prompt = PromptTemplate(
input_variables=["code"],
template="Code: \n{code}, \nDocumentation: ",
)
llm = OpenAI(temperature=0)
response = llm(prompt.format(code=function))
if not Path(f"outputs/{source_w}").exists():
with open(f"outputs/{source_w}", "w") as f:
f.write(f"# Function name: {name} \n\nFunction: \n```\n{function}\n```, \nDocumentation: \n{response}")
else:
with open(f"outputs/{source_w}", "a") as f:
f.write(f"\n\n# Function name: {name} \n\nFunction: \n```\n{function}\n```, \nDocumentation: \n{response}")
def parse_classes(classes_dict):
c1 = len(classes_dict)
c2 = 0
for source, classes in classes_dict.items():
c2 += 1
print(f"Processing file {c2}/{c1}")
f1 = len(classes)
f2 = 0
source_w = source.replace("inputs/", "")
source_w = source_w.replace(".py", ".md")
if "/" in source_w:
subfolders = source_w.split("/")
subfolders = subfolders[:-1]
subfolders = "/".join(subfolders)
if not Path(f"outputs/{subfolders}").exists():
Path(f"outputs/{subfolders}").mkdir(parents=True)
for name, function_names in classes.items():
print(f"Processing Class {f2}/{f1}")
f2 += 1
prompt = PromptTemplate(
input_variables=["class_name", "functions_names"],
template="Class name: {class_name} \nFunctions: {functions_names}, \nDocumentation: ",
)
llm = OpenAI(temperature=0)
response = llm(prompt.format(class_name=name, functions_names=function_names))
if not Path(f"outputs/{source_w}").exists():
with open(f"outputs/{source_w}", "w") as f:
f.write(f"# Class name: {name} \n\nFunctions: \n{function_names}, \nDocumentation: \n{response}")
else:
with open(f"outputs/{source_w}", "a") as f:
f.write(f"\n\n# Class name: {name} \n\nFunctions: \n{function_names}, \nDocumentation: \n{response}")
#User permission
def transform_to_docs(functions_dict, classes_dict):
# Function to ask user permission to call the OpenAI api and spend their OpenAI funds.
# Here we convert dicts to a string and calculate the number of OpenAI tokens the string represents.
docs_content = ""
for key, value in functions_dict.items():
docs_content += str(key) + str(value)
for key, value in classes_dict.items():
docs_content += str(key) + str(value)
encoding = tiktoken.get_encoding("cl100k_base")
num_tokens = len(encoding.encode(docs_content))
total_price = ((num_tokens / 1000) * 0.02)
# Here we print the number of tokens and the approx user cost with some visually appealing formatting.
print(f"Number of Tokens = {format(num_tokens, ',d')}")
print(f"Approx Cost = ${format(total_price, ',.2f')}")
#Here we check for user permission before calling the API.
user_input = input("Price Okay? (Y/N) \n").lower()
if user_input == "y":
if not Path("outputs").exists():
Path("outputs").mkdir()
parse_functions(functions_dict)
print("Functions done!")
parse_classes(classes_dict)
print("All done!")
elif user_input == "":
if not Path("outputs").exists():
Path("outputs").mkdir()
parse_functions(functions_dict)
print("Functions done!")
parse_classes(classes_dict)
print("All done!")
else:
print("The API was not called. No money was spent.")