DocsGPT/application/worker.py
2024-05-24 21:10:50 +05:30

237 lines
7.9 KiB
Python
Executable File

import os
import shutil
import string
import zipfile
import tiktoken
from urllib.parse import urljoin
import requests
from application.core.settings import settings
from application.parser.file.bulk import SimpleDirectoryReader
from application.parser.remote.remote_creator import RemoteCreator
from application.parser.open_ai_func import call_openai_api
from application.parser.schema.base import Document
from application.parser.token_func import group_split
# Define a function to extract metadata from a given filename.
def metadata_from_filename(title):
store = "/".join(title.split("/")[1:3])
return {"title": title, "store": store}
# Define a function to generate a random string of a given length.
def generate_random_string(length):
return "".join([string.ascii_letters[i % 52] for i in range(length)])
current_dir = os.path.dirname(
os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
)
def extract_zip_recursive(zip_path, extract_to, current_depth=0, max_depth=5):
"""
Recursively extract zip files with a limit on recursion depth.
Args:
zip_path (str): Path to the zip file to be extracted.
extract_to (str): Destination path for extracted files.
current_depth (int): Current depth of recursion.
max_depth (int): Maximum allowed depth of recursion to prevent infinite loops.
"""
if current_depth > max_depth:
print(f"Reached maximum recursion depth of {max_depth}")
return
with zipfile.ZipFile(zip_path, "r") as zip_ref:
zip_ref.extractall(extract_to)
os.remove(zip_path) # Remove the zip file after extracting
# Check for nested zip files and extract them
for root, dirs, files in os.walk(extract_to):
for file in files:
if file.endswith(".zip"):
# If a nested zip file is found, extract it recursively
file_path = os.path.join(root, file)
extract_zip_recursive(file_path, root, current_depth + 1, max_depth)
# Define the main function for ingesting and processing documents.
def ingest_worker(self, directory, formats, name_job, filename, user):
"""
Ingest and process documents.
Args:
self: Reference to the instance of the task.
directory (str): Specifies the directory for ingesting ('inputs' or 'temp').
formats (list of str): List of file extensions to consider for ingestion (e.g., [".rst", ".md"]).
name_job (str): Name of the job for this ingestion task.
filename (str): Name of the file to be ingested.
user (str): Identifier for the user initiating the ingestion.
Returns:
dict: Information about the completed ingestion task, including input parameters and a "limited" flag.
"""
# directory = 'inputs' or 'temp'
# formats = [".rst", ".md"]
input_files = None
recursive = True
limit = None
exclude = True
# name_job = 'job1'
# filename = 'install.rst'
# user = 'local'
sample = False
token_check = True
min_tokens = 150
max_tokens = 1250
recursion_depth = 2
full_path = os.path.join(directory, user, name_job)
import sys
print(full_path, file=sys.stderr)
# check if API_URL env variable is set
file_data = {"name": name_job, "file": filename, "user": user}
response = requests.get(
urljoin(settings.API_URL, "/api/download"), params=file_data
)
# check if file is in the response
print(response, file=sys.stderr)
file = response.content
if not os.path.exists(full_path):
os.makedirs(full_path)
with open(os.path.join(full_path, filename), "wb") as f:
f.write(file)
# check if file is .zip and extract it
if filename.endswith(".zip"):
extract_zip_recursive(
os.path.join(full_path, filename), full_path, 0, recursion_depth
)
self.update_state(state="PROGRESS", meta={"current": 1})
raw_docs = SimpleDirectoryReader(
input_dir=full_path,
input_files=input_files,
recursive=recursive,
required_exts=formats,
num_files_limit=limit,
exclude_hidden=exclude,
file_metadata=metadata_from_filename,
).load_data()
raw_docs = group_split(
documents=raw_docs,
min_tokens=min_tokens,
max_tokens=max_tokens,
token_check=token_check,
)
docs = [Document.to_langchain_format(raw_doc) for raw_doc in raw_docs]
call_openai_api(docs, full_path, self)
tokens = count_tokens_docs(docs)
self.update_state(state="PROGRESS", meta={"current": 100})
if sample:
for i in range(min(5, len(raw_docs))):
print(raw_docs[i].text)
# get files from outputs/inputs/index.faiss and outputs/inputs/index.pkl
# and send them to the server (provide user and name in form)
file_data = {"name": name_job, "user": user, "tokens":tokens}
if settings.VECTOR_STORE == "faiss":
files = {
"file_faiss": open(full_path + "/index.faiss", "rb"),
"file_pkl": open(full_path + "/index.pkl", "rb"),
}
response = requests.post(
urljoin(settings.API_URL, "/api/upload_index"), files=files, data=file_data
)
response = requests.get(
urljoin(settings.API_URL, "/api/delete_old?path=" + full_path)
)
else:
response = requests.post(
urljoin(settings.API_URL, "/api/upload_index"), data=file_data
)
# delete local
shutil.rmtree(full_path)
return {
"directory": directory,
"formats": formats,
"name_job": name_job,
"filename": filename,
"user": user,
"limited": False,
}
def remote_worker(self, source_data, name_job, user, loader, directory="temp"):
token_check = True
min_tokens = 150
max_tokens = 1250
full_path = directory + "/" + user + "/" + name_job
if not os.path.exists(full_path):
os.makedirs(full_path)
self.update_state(state="PROGRESS", meta={"current": 1})
remote_loader = RemoteCreator.create_loader(loader)
raw_docs = remote_loader.load_data(source_data)
docs = group_split(
documents=raw_docs,
min_tokens=min_tokens,
max_tokens=max_tokens,
token_check=token_check,
)
# docs = [Document.to_langchain_format(raw_doc) for raw_doc in raw_docs]
call_openai_api(docs, full_path, self)
tokens = count_tokens_docs(docs)
self.update_state(state="PROGRESS", meta={"current": 100})
# Proceed with uploading and cleaning as in the original function
file_data = {"name": name_job, "user": user, "tokens":tokens}
if settings.VECTOR_STORE == "faiss":
files = {
"file_faiss": open(full_path + "/index.faiss", "rb"),
"file_pkl": open(full_path + "/index.pkl", "rb"),
}
requests.post(
urljoin(settings.API_URL, "/api/upload_index"), files=files, data=file_data
)
requests.get(urljoin(settings.API_URL, "/api/delete_old?path=" + full_path))
else:
requests.post(urljoin(settings.API_URL, "/api/upload_index"), data=file_data)
shutil.rmtree(full_path)
return {"urls": source_data, "name_job": name_job, "user": user, "limited": False}
def count_tokens_docs(docs):
# Here we convert the docs list to a string and calculate the number of tokens the string represents.
# docs_content = (" ".join(docs))
docs_content = ""
for doc in docs:
docs_content += doc.page_content
tokens, total_price = num_tokens_from_string(
string=docs_content, encoding_name="cl100k_base"
)
# Here we print the number of tokens and the approx user cost with some visually appealing formatting.
return tokens
def num_tokens_from_string(string: str, encoding_name: str) -> int:
# Function to convert string to tokens and estimate user cost.
encoding = tiktoken.get_encoding(encoding_name)
num_tokens = len(encoding.encode(string))
total_price = (num_tokens / 1000) * 0.0004
return num_tokens, total_price