mirror of
https://github.com/arc53/DocsGPT
synced 2024-11-02 03:40:17 +00:00
200 lines
6.5 KiB
Python
200 lines
6.5 KiB
Python
from application.vectorstore.base import BaseVectorStore
|
|
from application.core.settings import settings
|
|
import elasticsearch
|
|
#from langchain.vectorstores.elasticsearch import ElasticsearchStore
|
|
|
|
|
|
class ElasticsearchStore(BaseVectorStore):
|
|
_es_connection = None # Class attribute to hold the Elasticsearch connection
|
|
|
|
def __init__(self, path, embeddings_key, index_name="docsgpt"):
|
|
super().__init__()
|
|
self.path = path.replace("/app/application/indexes/", "")
|
|
self.embeddings_key = embeddings_key
|
|
self.index_name = index_name
|
|
|
|
if ElasticsearchStore._es_connection is None:
|
|
connection_params = {}
|
|
connection_params["cloud_id"] = settings.ELASTIC_CLOUD_ID
|
|
connection_params["basic_auth"] = (settings.ELASTIC_USERNAME, settings.ELASTIC_PASSWORD)
|
|
ElasticsearchStore._es_connection = elasticsearch.Elasticsearch(**connection_params)
|
|
|
|
self.docsearch = ElasticsearchStore._es_connection
|
|
|
|
def connect_to_elasticsearch(
|
|
*,
|
|
es_url = None,
|
|
cloud_id = None,
|
|
api_key = None,
|
|
username = None,
|
|
password = None,
|
|
):
|
|
try:
|
|
import elasticsearch
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import elasticsearch python package. "
|
|
"Please install it with `pip install elasticsearch`."
|
|
)
|
|
|
|
if es_url and cloud_id:
|
|
raise ValueError(
|
|
"Both es_url and cloud_id are defined. Please provide only one."
|
|
)
|
|
|
|
connection_params = {}
|
|
|
|
if es_url:
|
|
connection_params["hosts"] = [es_url]
|
|
elif cloud_id:
|
|
connection_params["cloud_id"] = cloud_id
|
|
else:
|
|
raise ValueError("Please provide either elasticsearch_url or cloud_id.")
|
|
|
|
if api_key:
|
|
connection_params["api_key"] = api_key
|
|
elif username and password:
|
|
connection_params["basic_auth"] = (username, password)
|
|
|
|
es_client = elasticsearch.Elasticsearch(
|
|
**connection_params,
|
|
)
|
|
try:
|
|
es_client.info()
|
|
except Exception as e:
|
|
raise e
|
|
|
|
return es_client
|
|
|
|
def search(self, question, k=2, index_name=settings.ELASTIC_INDEX, *args, **kwargs):
|
|
embeddings = self._get_embeddings(settings.EMBEDDINGS_NAME, self.embeddings_key)
|
|
vector = embeddings.embed_query(question)
|
|
knn = {
|
|
"filter": [{"match": {"metadata.filename.keyword": self.path}}],
|
|
"field": "vector",
|
|
"k": k,
|
|
"num_candidates": 100,
|
|
"query_vector": vector,
|
|
}
|
|
full_query = {
|
|
"knn": knn,
|
|
"query": {
|
|
"bool": {
|
|
"must": [
|
|
{
|
|
"match": {
|
|
"text": {
|
|
"query": question,
|
|
}
|
|
}
|
|
}
|
|
],
|
|
"filter": [{"match": {"metadata.filename.keyword": self.path}}],
|
|
}
|
|
},
|
|
"rank": {"rrf": {}},
|
|
}
|
|
resp = self.docsearch.search(index=index_name, query=full_query['query'], size=k, knn=full_query['knn'])
|
|
return resp
|
|
|
|
def _create_index_if_not_exists(
|
|
self, index_name, dims_length
|
|
):
|
|
|
|
if self.client.indices.exists(index=index_name):
|
|
print(f"Index {index_name} already exists.")
|
|
|
|
else:
|
|
self.strategy.before_index_setup(
|
|
client=self.client,
|
|
text_field=self.query_field,
|
|
vector_query_field=self.vector_query_field,
|
|
)
|
|
|
|
indexSettings = self.index(
|
|
dims_length=dims_length,
|
|
)
|
|
self.client.indices.create(index=index_name, **indexSettings)
|
|
def index(
|
|
self,
|
|
dims_length,
|
|
):
|
|
|
|
|
|
return {
|
|
"mappings": {
|
|
"properties": {
|
|
"vector": {
|
|
"type": "dense_vector",
|
|
"dims": dims_length,
|
|
"index": True,
|
|
"similarity": "cosine",
|
|
},
|
|
}
|
|
}
|
|
}
|
|
|
|
def add_texts(
|
|
self,
|
|
texts,
|
|
metadatas = None,
|
|
ids = None,
|
|
refresh_indices = True,
|
|
create_index_if_not_exists = True,
|
|
bulk_kwargs = None,
|
|
**kwargs,
|
|
):
|
|
|
|
from elasticsearch.helpers import BulkIndexError, bulk
|
|
|
|
bulk_kwargs = bulk_kwargs or {}
|
|
import uuid
|
|
embeddings = []
|
|
ids = ids or [str(uuid.uuid4()) for _ in texts]
|
|
requests = []
|
|
embeddings = self._get_embeddings(settings.EMBEDDINGS_NAME, self.embeddings_key)
|
|
|
|
vectors = embeddings.embed_documents(list(texts))
|
|
|
|
dims_length = len(vectors[0])
|
|
|
|
if create_index_if_not_exists:
|
|
self._create_index_if_not_exists(
|
|
index_name=self.index_name, dims_length=dims_length
|
|
)
|
|
|
|
for i, (text, vector) in enumerate(zip(texts, vectors)):
|
|
metadata = metadatas[i] if metadatas else {}
|
|
|
|
requests.append(
|
|
{
|
|
"_op_type": "index",
|
|
"_index": self.index_name,
|
|
"text": text,
|
|
"vector": vector,
|
|
"metadata": metadata,
|
|
"_id": ids[i],
|
|
}
|
|
)
|
|
|
|
|
|
if len(requests) > 0:
|
|
try:
|
|
success, failed = bulk(
|
|
self.client,
|
|
requests,
|
|
stats_only=True,
|
|
refresh=refresh_indices,
|
|
**bulk_kwargs,
|
|
)
|
|
return ids
|
|
except BulkIndexError as e:
|
|
print(f"Error adding texts: {e}")
|
|
firstError = e.errors[0].get("index", {}).get("error", {})
|
|
print(f"First error reason: {firstError.get('reason')}")
|
|
raise e
|
|
|
|
else:
|
|
return []
|
|
|