DocsGPT/application/app.py
fernvenue 1104471b58
Update app.py
Redirect PosixPath to WindowsPath on Windows.
2023-02-05 21:24:01 +08:00

69 lines
1.9 KiB
Python

import os
import pickle
import dotenv
import datetime
from flask import Flask, request, render_template
# os.environ["LANGCHAIN_HANDLER"] = "langchain"
import faiss
from langchain import OpenAI
from langchain.chains import VectorDBQAWithSourcesChain
from langchain.prompts import PromptTemplate
# Redirect PosixPath to WindowsPath on Windows
import platform
if platform.system() == "Windows":
import pathlib
temp = pathlib.PosixPath
pathlib.PosixPath = pathlib.WindowsPath
# loading the .env file
dotenv.load_dotenv()
# loading the index and the store and the prompt template
index = faiss.read_index("docs.index")
with open("combine_prompt.txt", "r") as f:
template = f.read()
with open("faiss_store.pkl", "rb") as f:
store = pickle.load(f)
app = Flask(__name__)
@app.route("/")
def home():
return render_template("index.html")
@app.route("/api/answer", methods=["POST"])
def api_answer():
data = request.get_json()
question = data["question"]
store.index = index
# create a prompt template
c_prompt = PromptTemplate(input_variables=["summaries", "question"], template=template)
# create a chain with the prompt template and the store
chain = VectorDBQAWithSourcesChain.from_llm(llm=OpenAI(temperature=0), vectorstore=store, combine_prompt=c_prompt)
# fetch the answer
result = chain({"question": question})
# some formatting for the frontend
result['answer'] = result['answer'].replace("\\n", "<br>")
result['answer'] = result['answer'].replace("SOURCES:", "")
return result
# handling CORS
@app.after_request
def after_request(response):
response.headers.add('Access-Control-Allow-Origin', '*')
response.headers.add('Access-Control-Allow-Headers', 'Content-Type,Authorization')
response.headers.add('Access-Control-Allow-Methods', 'GET,PUT,POST,DELETE,OPTIONS')
return response
if __name__ == "__main__":
app.run(debug=True)