mirror of
https://github.com/arc53/DocsGPT
synced 2024-11-09 19:10:53 +00:00
71 lines
3.0 KiB
Python
71 lines
3.0 KiB
Python
from pathlib import Path
|
|
from typing import Optional
|
|
import os
|
|
|
|
from pydantic_settings import BaseSettings
|
|
|
|
current_dir = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
|
|
|
|
|
class Settings(BaseSettings):
|
|
LLM_NAME: str = "docsgpt"
|
|
MODEL_NAME: Optional[str] = None # if LLM_NAME is openai, MODEL_NAME can be gpt-4 or gpt-3.5-turbo
|
|
EMBEDDINGS_NAME: str = "huggingface_sentence-transformers/all-mpnet-base-v2"
|
|
CELERY_BROKER_URL: str = "redis://localhost:6379/0"
|
|
CELERY_RESULT_BACKEND: str = "redis://localhost:6379/1"
|
|
MONGO_URI: str = "mongodb://localhost:27017/docsgpt"
|
|
MODEL_PATH: str = os.path.join(current_dir, "models/docsgpt-7b-f16.gguf")
|
|
DEFAULT_MAX_HISTORY: int = 150
|
|
MODEL_TOKEN_LIMITS: dict = {"gpt-3.5-turbo": 4096, "claude-2": 1e5}
|
|
UPLOAD_FOLDER: str = "inputs"
|
|
VECTOR_STORE: str = "faiss" # "faiss" or "elasticsearch" or "qdrant"
|
|
RETRIEVERS_ENABLED: list = ["classic_rag", "duckduck_search"] # also brave_search
|
|
|
|
API_URL: str = "http://localhost:7091" # backend url for celery worker
|
|
|
|
API_KEY: Optional[str] = None # LLM api key
|
|
EMBEDDINGS_KEY: Optional[str] = None # api key for embeddings (if using openai, just copy API_KEY)
|
|
OPENAI_API_BASE: Optional[str] = None # azure openai api base url
|
|
OPENAI_API_VERSION: Optional[str] = None # azure openai api version
|
|
AZURE_DEPLOYMENT_NAME: Optional[str] = None # azure deployment name for answering
|
|
AZURE_EMBEDDINGS_DEPLOYMENT_NAME: Optional[str] = None # azure deployment name for embeddings
|
|
|
|
# elasticsearch
|
|
ELASTIC_CLOUD_ID: Optional[str] = None # cloud id for elasticsearch
|
|
ELASTIC_USERNAME: Optional[str] = None # username for elasticsearch
|
|
ELASTIC_PASSWORD: Optional[str] = None # password for elasticsearch
|
|
ELASTIC_URL: Optional[str] = None # url for elasticsearch
|
|
ELASTIC_INDEX: Optional[str] = "docsgpt" # index name for elasticsearch
|
|
|
|
# SageMaker config
|
|
SAGEMAKER_ENDPOINT: Optional[str] = None # SageMaker endpoint name
|
|
SAGEMAKER_REGION: Optional[str] = None # SageMaker region name
|
|
SAGEMAKER_ACCESS_KEY: Optional[str] = None # SageMaker access key
|
|
SAGEMAKER_SECRET_KEY: Optional[str] = None # SageMaker secret key
|
|
|
|
# prem ai project id
|
|
PREMAI_PROJECT_ID: Optional[str] = None
|
|
|
|
# Qdrant vectorstore config
|
|
QDRANT_COLLECTION_NAME: Optional[str] = "docsgpt"
|
|
QDRANT_LOCATION: Optional[str] = None
|
|
QDRANT_URL: Optional[str] = None
|
|
QDRANT_PORT: Optional[int] = 6333
|
|
QDRANT_GRPC_PORT: int = 6334
|
|
QDRANT_PREFER_GRPC: bool = False
|
|
QDRANT_HTTPS: Optional[bool] = None
|
|
QDRANT_API_KEY: Optional[str] = None
|
|
QDRANT_PREFIX: Optional[str] = None
|
|
QDRANT_TIMEOUT: Optional[float] = None
|
|
QDRANT_HOST: Optional[str] = None
|
|
QDRANT_PATH: Optional[str] = None
|
|
QDRANT_DISTANCE_FUNC: str = "Cosine"
|
|
|
|
BRAVE_SEARCH_API_KEY: Optional[str] = None
|
|
|
|
FLASK_DEBUG_MODE: bool = False
|
|
|
|
|
|
path = Path(__file__).parent.parent.absolute()
|
|
settings = Settings(_env_file=path.joinpath(".env"), _env_file_encoding="utf-8")
|