DocsGPT/application/api/answer/routes.py

299 lines
9.8 KiB
Python

import asyncio
import os
from flask import Blueprint, request, Response
import json
import datetime
import logging
import traceback
from pymongo import MongoClient
from bson.objectid import ObjectId
from application.utils import count_tokens
from application.core.settings import settings
from application.vectorstore.vector_creator import VectorCreator
from application.llm.llm_creator import LLMCreator
from application.retriever.retriever_creator import RetrieverCreator
from application.error import bad_request
logger = logging.getLogger(__name__)
mongo = MongoClient(settings.MONGO_URI)
db = mongo["docsgpt"]
conversations_collection = db["conversations"]
vectors_collection = db["vectors"]
prompts_collection = db["prompts"]
api_key_collection = db["api_keys"]
answer = Blueprint('answer', __name__)
gpt_model = ""
# to have some kind of default behaviour
if settings.LLM_NAME == "openai":
gpt_model = 'gpt-3.5-turbo'
elif settings.LLM_NAME == "anthropic":
gpt_model = 'claude-2'
if settings.MODEL_NAME: # in case there is particular model name configured
gpt_model = settings.MODEL_NAME
# load the prompts
current_dir = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
with open(os.path.join(current_dir, "prompts", "chat_combine_default.txt"), "r") as f:
chat_combine_template = f.read()
with open(os.path.join(current_dir, "prompts", "chat_reduce_prompt.txt"), "r") as f:
chat_reduce_template = f.read()
with open(os.path.join(current_dir, "prompts", "chat_combine_creative.txt"), "r") as f:
chat_combine_creative = f.read()
with open(os.path.join(current_dir, "prompts", "chat_combine_strict.txt"), "r") as f:
chat_combine_strict = f.read()
api_key_set = settings.API_KEY is not None
embeddings_key_set = settings.EMBEDDINGS_KEY is not None
async def async_generate(chain, question, chat_history):
result = await chain.arun({"question": question, "chat_history": chat_history})
return result
def run_async_chain(chain, question, chat_history):
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
result = {}
try:
answer = loop.run_until_complete(async_generate(chain, question, chat_history))
finally:
loop.close()
result["answer"] = answer
return result
def get_data_from_api_key(api_key):
data = api_key_collection.find_one({"key": api_key})
if data is None:
return bad_request(401, "Invalid API key")
return data
def get_vectorstore(data):
if "active_docs" in data:
if data["active_docs"].split("/")[0] == "default":
vectorstore = ""
elif data["active_docs"].split("/")[0] == "local":
vectorstore = "indexes/" + data["active_docs"]
else:
vectorstore = "vectors/" + data["active_docs"]
if data["active_docs"] == "default":
vectorstore = ""
else:
vectorstore = ""
vectorstore = os.path.join("application", vectorstore)
return vectorstore
def is_azure_configured():
return settings.OPENAI_API_BASE and settings.OPENAI_API_VERSION and settings.AZURE_DEPLOYMENT_NAME
def save_conversation(conversation_id, question, response, source_log_docs, llm):
if conversation_id is not None and conversation_id != "None":
conversations_collection.update_one(
{"_id": ObjectId(conversation_id)},
{"$push": {"queries": {"prompt": question, "response": response, "sources": source_log_docs}}},
)
else:
# create new conversation
# generate summary
messages_summary = [{"role": "assistant", "content": "Summarise following conversation in no more than 3 "
"words, respond ONLY with the summary, use the same "
"language as the system \n\nUser: " + question + "\n\n" +
"AI: " +
response},
{"role": "user", "content": "Summarise following conversation in no more than 3 words, "
"respond ONLY with the summary, use the same language as the "
"system"}]
completion = llm.gen(model=gpt_model,
messages=messages_summary, max_tokens=30)
conversation_id = conversations_collection.insert_one(
{"user": "local",
"date": datetime.datetime.utcnow(),
"name": completion,
"queries": [{"prompt": question, "response": response, "sources": source_log_docs}]}
).inserted_id
return conversation_id
def get_prompt(prompt_id):
if prompt_id == 'default':
prompt = chat_combine_template
elif prompt_id == 'creative':
prompt = chat_combine_creative
elif prompt_id == 'strict':
prompt = chat_combine_strict
else:
prompt = prompts_collection.find_one({"_id": ObjectId(prompt_id)})["content"]
return prompt
def complete_stream(question, retriever, conversation_id):
response_full = ""
source_log_docs = []
answer = retriever.gen()
for line in answer:
if "answer" in line:
response_full += str(line["answer"])
data = json.dumps(line)
yield f"data: {data}\n\n"
elif "source" in line:
source_log_docs.append(line["source"])
llm = LLMCreator.create_llm(settings.LLM_NAME, api_key=settings.API_KEY)
conversation_id = save_conversation(conversation_id, question, response_full, source_log_docs, llm)
# send data.type = "end" to indicate that the stream has ended as json
data = json.dumps({"type": "id", "id": str(conversation_id)})
yield f"data: {data}\n\n"
data = json.dumps({"type": "end"})
yield f"data: {data}\n\n"
@answer.route("/stream", methods=["POST"])
def stream():
data = request.get_json()
# get parameter from url question
question = data["question"]
if "history" not in data:
history = []
else:
history = data["history"]
history = json.loads(history)
if "conversation_id" not in data:
conversation_id = None
else:
conversation_id = data["conversation_id"]
if 'prompt_id' in data:
prompt_id = data["prompt_id"]
else:
prompt_id = 'default'
if 'selectedDocs' in data and data['selectedDocs'] is None:
chunks = 0
elif 'chunks' in data:
chunks = int(data["chunks"])
else:
chunks = 2
prompt = get_prompt(prompt_id)
# check if active_docs is set
if "api_key" in data:
data_key = get_data_from_api_key(data["api_key"])
source = {"active_docs": data_key["source"]}
elif "active_docs" in data:
source = {"active_docs": data["active_docs"]}
else:
source = {}
retriever = RetrieverCreator.create_retriever("classic", question=question,
source=source, chat_history=history, prompt=prompt, chunks=chunks, gpt_model=gpt_model
)
return Response(
complete_stream(question=question, retriever=retriever,
conversation_id=conversation_id), mimetype="text/event-stream")
@answer.route("/api/answer", methods=["POST"])
def api_answer():
data = request.get_json()
question = data["question"]
if "history" not in data:
history = []
else:
history = data["history"]
if "conversation_id" not in data:
conversation_id = None
else:
conversation_id = data["conversation_id"]
print("-" * 5)
if 'prompt_id' in data:
prompt_id = data["prompt_id"]
else:
prompt_id = 'default'
if 'chunks' in data:
chunks = int(data["chunks"])
else:
chunks = 2
prompt = get_prompt(prompt_id)
# use try and except to check for exception
try:
# check if the vectorstore is set
if "api_key" in data:
data_key = get_data_from_api_key(data["api_key"])
source = {"active_docs": data_key["source"]}
else:
source = {data}
retriever = RetrieverCreator.create_retriever("classic", question=question,
source=source, chat_history=history, prompt=prompt, chunks=chunks, gpt_model=gpt_model
)
source_log_docs = []
response_full = ""
for line in retriever.gen():
if "source" in line:
source_log_docs.append(line["source"])
elif "answer" in line:
response_full += line["answer"]
llm = LLMCreator.create_llm(settings.LLM_NAME, api_key=settings.API_KEY)
result = {"answer": response_full, "sources": source_log_docs}
result["conversation_id"] = save_conversation(conversation_id, question, response_full, source_log_docs, llm)
return result
except Exception as e:
# print whole traceback
traceback.print_exc()
print(str(e))
return bad_request(500, str(e))
@answer.route("/api/search", methods=["POST"])
def api_search():
data = request.get_json()
# get parameter from url question
question = data["question"]
if "api_key" in data:
data_key = get_data_from_api_key(data["api_key"])
source = {"active_docs": data_key["source"]}
elif "active_docs" in data:
source = {"active_docs": data["active_docs"]}
else:
source = {}
if 'chunks' in data:
chunks = int(data["chunks"])
else:
chunks = 2
retriever = RetrieverCreator.create_retriever("classic", question=question,
source=source, chat_history=[], prompt="default", chunks=chunks, gpt_model=gpt_model
)
docs = retriever.search()
return docs