mirror of
https://github.com/arc53/DocsGPT
synced 2024-11-09 19:10:53 +00:00
299 lines
9.8 KiB
Python
299 lines
9.8 KiB
Python
import asyncio
|
|
import os
|
|
from flask import Blueprint, request, Response
|
|
import json
|
|
import datetime
|
|
import logging
|
|
import traceback
|
|
|
|
from pymongo import MongoClient
|
|
from bson.objectid import ObjectId
|
|
from application.utils import count_tokens
|
|
|
|
|
|
|
|
from application.core.settings import settings
|
|
from application.vectorstore.vector_creator import VectorCreator
|
|
from application.llm.llm_creator import LLMCreator
|
|
from application.retriever.retriever_creator import RetrieverCreator
|
|
from application.error import bad_request
|
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
mongo = MongoClient(settings.MONGO_URI)
|
|
db = mongo["docsgpt"]
|
|
conversations_collection = db["conversations"]
|
|
vectors_collection = db["vectors"]
|
|
prompts_collection = db["prompts"]
|
|
api_key_collection = db["api_keys"]
|
|
answer = Blueprint('answer', __name__)
|
|
|
|
gpt_model = ""
|
|
# to have some kind of default behaviour
|
|
if settings.LLM_NAME == "openai":
|
|
gpt_model = 'gpt-3.5-turbo'
|
|
elif settings.LLM_NAME == "anthropic":
|
|
gpt_model = 'claude-2'
|
|
|
|
if settings.MODEL_NAME: # in case there is particular model name configured
|
|
gpt_model = settings.MODEL_NAME
|
|
|
|
# load the prompts
|
|
current_dir = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
|
with open(os.path.join(current_dir, "prompts", "chat_combine_default.txt"), "r") as f:
|
|
chat_combine_template = f.read()
|
|
|
|
with open(os.path.join(current_dir, "prompts", "chat_reduce_prompt.txt"), "r") as f:
|
|
chat_reduce_template = f.read()
|
|
|
|
with open(os.path.join(current_dir, "prompts", "chat_combine_creative.txt"), "r") as f:
|
|
chat_combine_creative = f.read()
|
|
|
|
with open(os.path.join(current_dir, "prompts", "chat_combine_strict.txt"), "r") as f:
|
|
chat_combine_strict = f.read()
|
|
|
|
api_key_set = settings.API_KEY is not None
|
|
embeddings_key_set = settings.EMBEDDINGS_KEY is not None
|
|
|
|
|
|
async def async_generate(chain, question, chat_history):
|
|
result = await chain.arun({"question": question, "chat_history": chat_history})
|
|
return result
|
|
|
|
|
|
|
|
|
|
def run_async_chain(chain, question, chat_history):
|
|
loop = asyncio.new_event_loop()
|
|
asyncio.set_event_loop(loop)
|
|
result = {}
|
|
try:
|
|
answer = loop.run_until_complete(async_generate(chain, question, chat_history))
|
|
finally:
|
|
loop.close()
|
|
result["answer"] = answer
|
|
return result
|
|
|
|
def get_data_from_api_key(api_key):
|
|
data = api_key_collection.find_one({"key": api_key})
|
|
if data is None:
|
|
return bad_request(401, "Invalid API key")
|
|
return data
|
|
|
|
|
|
def get_vectorstore(data):
|
|
if "active_docs" in data:
|
|
if data["active_docs"].split("/")[0] == "default":
|
|
vectorstore = ""
|
|
elif data["active_docs"].split("/")[0] == "local":
|
|
vectorstore = "indexes/" + data["active_docs"]
|
|
else:
|
|
vectorstore = "vectors/" + data["active_docs"]
|
|
if data["active_docs"] == "default":
|
|
vectorstore = ""
|
|
else:
|
|
vectorstore = ""
|
|
vectorstore = os.path.join("application", vectorstore)
|
|
return vectorstore
|
|
|
|
|
|
def is_azure_configured():
|
|
return settings.OPENAI_API_BASE and settings.OPENAI_API_VERSION and settings.AZURE_DEPLOYMENT_NAME
|
|
|
|
def save_conversation(conversation_id, question, response, source_log_docs, llm):
|
|
if conversation_id is not None and conversation_id != "None":
|
|
conversations_collection.update_one(
|
|
{"_id": ObjectId(conversation_id)},
|
|
{"$push": {"queries": {"prompt": question, "response": response, "sources": source_log_docs}}},
|
|
)
|
|
|
|
else:
|
|
# create new conversation
|
|
# generate summary
|
|
messages_summary = [{"role": "assistant", "content": "Summarise following conversation in no more than 3 "
|
|
"words, respond ONLY with the summary, use the same "
|
|
"language as the system \n\nUser: " + question + "\n\n" +
|
|
"AI: " +
|
|
response},
|
|
{"role": "user", "content": "Summarise following conversation in no more than 3 words, "
|
|
"respond ONLY with the summary, use the same language as the "
|
|
"system"}]
|
|
|
|
completion = llm.gen(model=gpt_model,
|
|
messages=messages_summary, max_tokens=30)
|
|
conversation_id = conversations_collection.insert_one(
|
|
{"user": "local",
|
|
"date": datetime.datetime.utcnow(),
|
|
"name": completion,
|
|
"queries": [{"prompt": question, "response": response, "sources": source_log_docs}]}
|
|
).inserted_id
|
|
return conversation_id
|
|
|
|
def get_prompt(prompt_id):
|
|
if prompt_id == 'default':
|
|
prompt = chat_combine_template
|
|
elif prompt_id == 'creative':
|
|
prompt = chat_combine_creative
|
|
elif prompt_id == 'strict':
|
|
prompt = chat_combine_strict
|
|
else:
|
|
prompt = prompts_collection.find_one({"_id": ObjectId(prompt_id)})["content"]
|
|
return prompt
|
|
|
|
|
|
def complete_stream(question, retriever, conversation_id):
|
|
|
|
|
|
response_full = ""
|
|
source_log_docs = []
|
|
answer = retriever.gen()
|
|
for line in answer:
|
|
if "answer" in line:
|
|
response_full += str(line["answer"])
|
|
data = json.dumps(line)
|
|
yield f"data: {data}\n\n"
|
|
elif "source" in line:
|
|
source_log_docs.append(line["source"])
|
|
|
|
|
|
llm = LLMCreator.create_llm(settings.LLM_NAME, api_key=settings.API_KEY)
|
|
conversation_id = save_conversation(conversation_id, question, response_full, source_log_docs, llm)
|
|
|
|
# send data.type = "end" to indicate that the stream has ended as json
|
|
data = json.dumps({"type": "id", "id": str(conversation_id)})
|
|
yield f"data: {data}\n\n"
|
|
data = json.dumps({"type": "end"})
|
|
yield f"data: {data}\n\n"
|
|
|
|
|
|
@answer.route("/stream", methods=["POST"])
|
|
def stream():
|
|
data = request.get_json()
|
|
# get parameter from url question
|
|
question = data["question"]
|
|
if "history" not in data:
|
|
history = []
|
|
else:
|
|
history = data["history"]
|
|
history = json.loads(history)
|
|
if "conversation_id" not in data:
|
|
conversation_id = None
|
|
else:
|
|
conversation_id = data["conversation_id"]
|
|
if 'prompt_id' in data:
|
|
prompt_id = data["prompt_id"]
|
|
else:
|
|
prompt_id = 'default'
|
|
if 'selectedDocs' in data and data['selectedDocs'] is None:
|
|
chunks = 0
|
|
elif 'chunks' in data:
|
|
chunks = int(data["chunks"])
|
|
else:
|
|
chunks = 2
|
|
|
|
prompt = get_prompt(prompt_id)
|
|
|
|
# check if active_docs is set
|
|
|
|
if "api_key" in data:
|
|
data_key = get_data_from_api_key(data["api_key"])
|
|
source = {"active_docs": data_key["source"]}
|
|
elif "active_docs" in data:
|
|
source = {"active_docs": data["active_docs"]}
|
|
else:
|
|
source = {}
|
|
|
|
retriever = RetrieverCreator.create_retriever("classic", question=question,
|
|
source=source, chat_history=history, prompt=prompt, chunks=chunks, gpt_model=gpt_model
|
|
)
|
|
|
|
return Response(
|
|
complete_stream(question=question, retriever=retriever,
|
|
conversation_id=conversation_id), mimetype="text/event-stream")
|
|
|
|
|
|
@answer.route("/api/answer", methods=["POST"])
|
|
def api_answer():
|
|
data = request.get_json()
|
|
question = data["question"]
|
|
if "history" not in data:
|
|
history = []
|
|
else:
|
|
history = data["history"]
|
|
if "conversation_id" not in data:
|
|
conversation_id = None
|
|
else:
|
|
conversation_id = data["conversation_id"]
|
|
print("-" * 5)
|
|
if 'prompt_id' in data:
|
|
prompt_id = data["prompt_id"]
|
|
else:
|
|
prompt_id = 'default'
|
|
if 'chunks' in data:
|
|
chunks = int(data["chunks"])
|
|
else:
|
|
chunks = 2
|
|
|
|
prompt = get_prompt(prompt_id)
|
|
|
|
# use try and except to check for exception
|
|
try:
|
|
# check if the vectorstore is set
|
|
if "api_key" in data:
|
|
data_key = get_data_from_api_key(data["api_key"])
|
|
source = {"active_docs": data_key["source"]}
|
|
else:
|
|
source = {data}
|
|
|
|
retriever = RetrieverCreator.create_retriever("classic", question=question,
|
|
source=source, chat_history=history, prompt=prompt, chunks=chunks, gpt_model=gpt_model
|
|
)
|
|
source_log_docs = []
|
|
response_full = ""
|
|
for line in retriever.gen():
|
|
if "source" in line:
|
|
source_log_docs.append(line["source"])
|
|
elif "answer" in line:
|
|
response_full += line["answer"]
|
|
|
|
llm = LLMCreator.create_llm(settings.LLM_NAME, api_key=settings.API_KEY)
|
|
|
|
|
|
result = {"answer": response_full, "sources": source_log_docs}
|
|
result["conversation_id"] = save_conversation(conversation_id, question, response_full, source_log_docs, llm)
|
|
|
|
return result
|
|
except Exception as e:
|
|
# print whole traceback
|
|
traceback.print_exc()
|
|
print(str(e))
|
|
return bad_request(500, str(e))
|
|
|
|
|
|
@answer.route("/api/search", methods=["POST"])
|
|
def api_search():
|
|
data = request.get_json()
|
|
# get parameter from url question
|
|
question = data["question"]
|
|
|
|
if "api_key" in data:
|
|
data_key = get_data_from_api_key(data["api_key"])
|
|
source = {"active_docs": data_key["source"]}
|
|
elif "active_docs" in data:
|
|
source = {"active_docs": data["active_docs"]}
|
|
else:
|
|
source = {}
|
|
if 'chunks' in data:
|
|
chunks = int(data["chunks"])
|
|
else:
|
|
chunks = 2
|
|
|
|
retriever = RetrieverCreator.create_retriever("classic", question=question,
|
|
source=source, chat_history=[], prompt="default", chunks=chunks, gpt_model=gpt_model
|
|
)
|
|
docs = retriever.search()
|
|
return docs
|
|
|