DocsGPT/scripts/ingest.py
2023-03-14 17:33:19 +04:00

124 lines
5.5 KiB
Python

import os
import sys
import nltk
import dotenv
import typer
from collections import defaultdict
from typing import List, Optional
from parser.file.bulk import SimpleDirectoryReader
from parser.schema.base import Document
from parser.open_ai_func import call_openai_api, get_user_permission
from parser.py2doc import transform_to_docs
from parser.py2doc import extract_functions_and_classes as extract_py
from parser.js2doc import extract_functions_and_classes as extract_js
from parser.java2doc import extract_functions_and_classes as extract_java
from parser.token_func import group_split
dotenv.load_dotenv()
app = typer.Typer(add_completion=False)
nltk.download('punkt', quiet=True)
nltk.download('averaged_perceptron_tagger', quiet=True)
#Splits all files in specified folder to documents
@app.command()
def ingest(yes: bool = typer.Option(False, "-y", "--yes", prompt=False,
help="Whether to skip price confirmation"),
dir: Optional[List[str]] = typer.Option(["inputs"],
help="""List of paths to directory for index creation.
E.g. --dir inputs --dir inputs2"""),
file: Optional[List[str]] = typer.Option(None,
help="""File paths to use (Optional; overrides dir).
E.g. --file inputs/1.md --file inputs/2.md"""),
recursive: Optional[bool] = typer.Option(True, help="Whether to recursively search in subdirectories."),
limit: Optional[int] = typer.Option(None, help="Maximum number of files to read."),
formats: Optional[List[str]] = typer.Option([".rst", ".md"],
help="""List of required extensions (list with .)
Currently supported: .rst, .md, .pdf, .docx, .csv, .epub, .html, .mdx"""),
exclude: Optional[bool] = typer.Option(True, help="Whether to exclude hidden files (dotfiles)."),
sample: Optional[bool] = typer.Option(False, help="Whether to output sample of the first 5 split documents."),
token_check: Optional[bool] = typer.Option(True, help="Whether to group small documents and split large."),
min_tokens: Optional[int] = typer.Option(150, help="Minimum number of tokens to not group."),
max_tokens: Optional[int] = typer.Option(2000, help="Maximum number of tokens to not split."),
):
"""
Creates index from specified location or files.
By default /inputs folder is used, .rst and .md are parsed.
"""
def process_one_docs(directory, folder_name):
raw_docs = SimpleDirectoryReader(input_dir=directory, input_files=file, recursive=recursive,
required_exts=formats, num_files_limit=limit,
exclude_hidden=exclude).load_data()
# Here we split the documents, as needed, into smaller chunks.
# We do this due to the context limits of the LLMs.
raw_docs = group_split(documents=raw_docs, min_tokens=min_tokens, max_tokens=max_tokens, token_check=token_check)
#Old method
# text_splitter = RecursiveCharacterTextSplitter()
# docs = text_splitter.split_documents(raw_docs)
#Sample feature
if sample == True:
for i in range(min(5, len(raw_docs))):
print(raw_docs[i].text)
docs = [Document.to_langchain_format(raw_doc) for raw_doc in raw_docs]
# Here we check for command line arguments for bot calls.
# If no argument exists or the yes is not True, then the
# user permission is requested to call the API.
if len(sys.argv) > 1:
if yes:
call_openai_api(docs, folder_name)
else:
get_user_permission(docs, folder_name)
else:
get_user_permission(docs, folder_name)
folder_counts = defaultdict(int)
folder_names = []
for dir_path in dir:
folder_name = os.path.basename(os.path.normpath(dir_path))
folder_counts[folder_name] += 1
if folder_counts[folder_name] > 1:
folder_name = f"{folder_name}_{folder_counts[folder_name]}"
folder_names.append(folder_name)
for directory, folder_name in zip(dir, folder_names):
process_one_docs(directory, folder_name)
@app.command()
def convert(dir: Optional[str] = typer.Option("inputs",
help="""Path to directory to make documentation for.
E.g. --dir inputs """),
formats: Optional[str] = typer.Option("py",
help="""Required language.
py, js, java supported for now""")):
"""
Creates documentation linked to original functions from specified location.
By default /inputs folder is used, .py is parsed.
"""
if formats == 'py':
functions_dict, classes_dict = extract_py(dir)
elif formats == 'js':
functions_dict, classes_dict = extract_js(dir)
elif formats == 'java':
functions_dict, classes_dict = extract_java(dir)
else:
raise Exception("Sorry, language not supported yet")
transform_to_docs(functions_dict, classes_dict, formats, dir)
if __name__ == "__main__":
app()