import os import dotenv import requests from flask import Flask, request, render_template from langchain import FAISS from langchain import OpenAI, VectorDBQA, HuggingFaceHub, Cohere from langchain.chains.question_answering import load_qa_chain from langchain.embeddings import OpenAIEmbeddings, HuggingFaceHubEmbeddings, CohereEmbeddings, HuggingFaceInstructEmbeddings from langchain.prompts import PromptTemplate # os.environ["LANGCHAIN_HANDLER"] = "langchain" if os.getenv("LLM_NAME") is not None: llm_choice = os.getenv("LLM_NAME") else: llm_choice = "openai" if os.getenv("EMBEDDINGS_NAME") is not None: embeddings_choice = os.getenv("EMBEDDINGS_NAME") else: embeddings_choice = "openai_text-embedding-ada-002" if llm_choice == "manifest": from manifest import Manifest from langchain.llms.manifest import ManifestWrapper manifest = Manifest( client_name="huggingface", client_connection="http://127.0.0.1:5000" ) # Redirect PosixPath to WindowsPath on Windows import platform if platform.system() == "Windows": import pathlib temp = pathlib.PosixPath pathlib.PosixPath = pathlib.WindowsPath # loading the .env file dotenv.load_dotenv() with open("combine_prompt.txt", "r") as f: template = f.read() if os.getenv("API_KEY") is not None: api_key_set = True else: api_key_set = False if os.getenv("EMBEDDINGS_KEY") is not None: embeddings_key_set = True else: embeddings_key_set = False app = Flask(__name__) @app.route("/") def home(): return render_template("index.html", api_key_set=api_key_set, llm_choice=llm_choice, embeddings_choice=embeddings_choice) @app.route("/api/answer", methods=["POST"]) def api_answer(): data = request.get_json() question = data["question"] if not api_key_set: api_key = data["api_key"] else: api_key = os.getenv("API_KEY") if not embeddings_key_set: embeddings_key = data["embeddings_key"] else: embeddings_key = os.getenv("EMBEDDINGS_KEY") # check if the vectorstore is set if "active_docs" in data: vectorstore = "vectors/" + data["active_docs"] if data['active_docs'] == "default": vectorstore = "" else: vectorstore = "" # loading the index and the store and the prompt template # Note if you have used other embeddings than OpenAI, you need to change the embeddings if embeddings_choice == "openai_text-embedding-ada-002": docsearch = FAISS.load_local(vectorstore, OpenAIEmbeddings(openai_api_key=embeddings_key)) elif embeddings_choice == "huggingface_sentence-transformers/all-mpnet-base-v2": docsearch = FAISS.load_local(vectorstore, HuggingFaceHubEmbeddings()) elif embeddings_choice == "huggingface_hkunlp/instructor-large": docsearch = FAISS.load_local(vectorstore, HuggingFaceInstructEmbeddings()) elif embeddings_choice == "cohere_medium": docsearch = FAISS.load_local(vectorstore, CohereEmbeddings(cohere_api_key=embeddings_key)) # create a prompt template c_prompt = PromptTemplate(input_variables=["summaries", "question"], template=template) if llm_choice == "openai": llm = OpenAI(openai_api_key=api_key, temperature=0) elif llm_choice == "manifest": llm = ManifestWrapper(client=manifest, llm_kwargs={"temperature": 0.001, "max_tokens": 2048}) elif llm_choice == "huggingface": llm = HuggingFaceHub(repo_id="bigscience/bloom", huggingfacehub_api_token=api_key) elif llm_choice == "cohere": llm = Cohere(model="command-xlarge-nightly", cohere_api_key=api_key) qa_chain = load_qa_chain(llm=llm, chain_type="map_reduce", combine_prompt=c_prompt) chain = VectorDBQA(combine_documents_chain=qa_chain, vectorstore=docsearch, k=4) # fetch the answer result = chain({"query": question}) print(result) # some formatting for the frontend result['answer'] = result['result'] result['answer'] = result['answer'].replace("\\n", "
") result['answer'] = result['answer'].replace("SOURCES:", "") # mock result # result = { # "answer": "The answer is 42", # "sources": ["https://en.wikipedia.org/wiki/42_(number)", "https://en.wikipedia.org/wiki/42_(number)"] # } return result @app.route("/api/docs_check", methods=["POST"]) def check_docs(): # check if docs exist in a vectorstore folder data = request.get_json() vectorstore = "vectors/" + data["docs"] base_path = 'https://raw.githubusercontent.com/arc53/DocsHUB/main/' # if os.path.exists(vectorstore): return {"status": 'exists'} else: r = requests.get(base_path + vectorstore + "docs.index") # save to vectors directory # check if the directory exists if not os.path.exists(vectorstore): os.makedirs(vectorstore) with open(vectorstore + "docs.index", "wb") as f: f.write(r.content) # download the store r = requests.get(base_path + vectorstore + "faiss_store.pkl") with open(vectorstore + "faiss_store.pkl", "wb") as f: f.write(r.content) return {"status": 'loaded'} # handling CORS @app.after_request def after_request(response): response.headers.add('Access-Control-Allow-Origin', '*') response.headers.add('Access-Control-Allow-Headers', 'Content-Type,Authorization') response.headers.add('Access-Control-Allow-Methods', 'GET,PUT,POST,DELETE,OPTIONS') return response if __name__ == "__main__": app.run(debug=True)