from application.vectorstore.base import BaseVectorStore from langchain import FAISS from application.core.settings import settings class FaissStore(BaseVectorStore): def __init__(self, path, embeddings_key, docs_init=None): super().__init__() self.path = path if docs_init: self.docsearch = FAISS.from_documents( docs_init, self._get_embeddings(settings.EMBEDDINGS_NAME, embeddings_key) ) else: self.docsearch = FAISS.load_local( self.path, self._get_embeddings(settings.EMBEDDINGS_NAME, settings.EMBEDDINGS_KEY) ) def search(self, *args, **kwargs): return self.docsearch.similarity_search(*args, **kwargs) def add_texts(self, *args, **kwargs): return self.docsearch.add_texts(*args, **kwargs) def save_local(self, *args, **kwargs): return self.docsearch.save_local(*args, **kwargs)