Support for hf models optimised for docsgpt

This commit is contained in:
Alex 2023-08-15 14:14:49 +01:00
parent fcdc7b7aeb
commit e593241d75
3 changed files with 18 additions and 12 deletions

View File

@ -25,7 +25,6 @@ from langchain.embeddings import (
CohereEmbeddings,
HuggingFaceInstructEmbeddings,
)
from langchain.llms import GPT4All
from langchain.prompts import PromptTemplate
from langchain.prompts.chat import (
ChatPromptTemplate,
@ -50,11 +49,20 @@ if settings.LLM_NAME == "gpt4":
else:
gpt_model = 'gpt-3.5-turbo'
if settings.LLM_NAME == "manifest":
from manifest import Manifest
from langchain.llms.manifest import ManifestWrapper
manifest = Manifest(client_name="huggingface", client_connection="http://127.0.0.1:5000")
if settings.SELF_HOSTED_MODEL == True:
from langchain.llms import HuggingFacePipeline
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_id = settings.LLM_NAME # hf model id (Arc53/docsgpt-7b-falcon, Arc53/docsgpt-14b)
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
pipe = pipeline(
"text-generation", model=model,
tokenizer=tokenizer, max_new_tokens=2000,
device_map="auto", eos_token_id=tokenizer.eos_token_id
)
hf = HuggingFacePipeline(pipeline=pipe)
# Redirect PosixPath to WindowsPath on Windows
@ -346,14 +354,10 @@ def api_answer():
p_chat_combine = ChatPromptTemplate.from_messages(messages_combine)
elif settings.LLM_NAME == "openai":
llm = OpenAI(openai_api_key=api_key, temperature=0)
elif settings.LLM_NAME == "manifest":
llm = ManifestWrapper(client=manifest, llm_kwargs={"temperature": 0.001, "max_tokens": 2048})
elif settings.LLM_NAME == "huggingface":
llm = HuggingFaceHub(repo_id="bigscience/bloom", huggingfacehub_api_token=api_key)
elif settings.SELF_HOSTED_MODEL:
llm = hf
elif settings.LLM_NAME == "cohere":
llm = Cohere(model="command-xlarge-nightly", cohere_api_key=api_key)
elif settings.LLM_NAME == "gpt4all":
llm = GPT4All(model=settings.MODEL_PATH)
else:
raise ValueError("unknown LLM model")
@ -369,7 +373,7 @@ def api_answer():
# result = chain({"question": question, "chat_history": chat_history})
# generate async with async generate method
result = run_async_chain(chain, question, chat_history)
elif settings.LLM_NAME == "gpt4all":
elif settings.SELF_HOSTED_MODEL:
question_generator = LLMChain(llm=llm, prompt=CONDENSE_QUESTION_PROMPT)
doc_chain = load_qa_chain(llm, chain_type="map_reduce", combine_prompt=p_chat_combine)
chain = ConversationalRetrievalChain(

View File

@ -11,6 +11,7 @@ class Settings(BaseSettings):
MONGO_URI: str = "mongodb://localhost:27017/docsgpt"
MODEL_PATH: str = "./models/gpt4all-model.bin"
TOKENS_MAX_HISTORY: int = 150
SELF_HOSTED_MODEL: bool = False
API_URL: str = "http://localhost:7091" # backend url for celery worker

View File

@ -19,6 +19,7 @@ services:
- CELERY_BROKER_URL=redis://redis:6379/0
- CELERY_RESULT_BACKEND=redis://redis:6379/1
- MONGO_URI=mongodb://mongo:27017/docsgpt
- SELF_HOSTED_MODEL=$SELF_HOSTED_MODEL
ports:
- "7091:7091"
volumes: