Merge pull request #588 from asoderlind/fix/as/embedding-size-mismatch

raise more legible error if the word embedding dimensions don't match
This commit is contained in:
Alex 2023-10-16 12:53:08 -05:00 committed by GitHub
commit d899b6a7e1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 42 additions and 4 deletions

View File

@ -104,3 +104,4 @@ urllib3==1.26.17
vine==5.0.0
wcwidth==0.2.6
yarl==1.8.2
sentence-transformers==2.2.2

View File

@ -1,5 +1,5 @@
from application.vectorstore.base import BaseVectorStore
from langchain.vectorstores import FAISS
from application.vectorstore.base import BaseVectorStore
from application.core.settings import settings
class FaissStore(BaseVectorStore):
@ -7,14 +7,16 @@ class FaissStore(BaseVectorStore):
def __init__(self, path, embeddings_key, docs_init=None):
super().__init__()
self.path = path
embeddings = self._get_embeddings(settings.EMBEDDINGS_NAME, embeddings_key)
if docs_init:
self.docsearch = FAISS.from_documents(
docs_init, self._get_embeddings(settings.EMBEDDINGS_NAME, embeddings_key)
docs_init, embeddings
)
else:
self.docsearch = FAISS.load_local(
self.path, self._get_embeddings(settings.EMBEDDINGS_NAME, settings.EMBEDDINGS_KEY)
self.path, embeddings
)
self.assert_embedding_dimensions(embeddings)
def search(self, *args, **kwargs):
return self.docsearch.similarity_search(*args, **kwargs)
@ -24,3 +26,19 @@ class FaissStore(BaseVectorStore):
def save_local(self, *args, **kwargs):
return self.docsearch.save_local(*args, **kwargs)
def assert_embedding_dimensions(self, embeddings):
"""
Check that the word embedding dimension of the docsearch index matches
the dimension of the word embeddings used
"""
if settings.EMBEDDINGS_NAME == "huggingface_sentence-transformers/all-mpnet-base-v2":
try:
word_embedding_dimension = embeddings.client[1].word_embedding_dimension
except AttributeError as e:
raise AttributeError("word_embedding_dimension not found in embeddings.client[1]") from e
docsearch_index_dimension = self.docsearch.index.d
if word_embedding_dimension != docsearch_index_dimension:
raise ValueError(f"word_embedding_dimension ({word_embedding_dimension}) " +
f"!= docsearch_index_word_embedding_dimension ({docsearch_index_dimension})")

View File

@ -0,0 +1,19 @@
"""
Tests regarding the vector store class, including checking
compatibility between different transformers and local vector
stores (index.faiss)
"""
import pytest
from application.vectorstore.faiss import FaissStore
from application.core.settings import settings
def test_init_local_faiss_store_huggingface():
"""
Test that asserts that trying to initialize a FaissStore with
the huggingface sentence transformer below together with the
index.faiss file in the application/ folder results in a
dimension mismatch error.
"""
settings.EMBEDDINGS_NAME = "huggingface_sentence-transformers/all-mpnet-base-v2"
with pytest.raises(ValueError):
FaissStore("application/", "", None)