Merge pull request #352 from arc53/feature/aws-sagemaker-inference

sagemaker + llm creator class
This commit is contained in:
Pavel 2023-09-29 17:42:54 +03:00 committed by GitHub
commit 833e1836e1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 57 additions and 25 deletions

View File

@ -13,7 +13,7 @@ from transformers import GPT2TokenizerFast
from application.core.settings import settings from application.core.settings import settings
from application.llm.openai import OpenAILLM, AzureOpenAILLM from application.llm.llm_creator import LLMCreator
from application.vectorstore.faiss import FaissStore from application.vectorstore.faiss import FaissStore
from application.error import bad_request from application.error import bad_request
@ -128,16 +128,8 @@ def is_azure_configured():
def complete_stream(question, docsearch, chat_history, api_key, conversation_id): def complete_stream(question, docsearch, chat_history, api_key, conversation_id):
if is_azure_configured(): llm = LLMCreator.create_llm(settings.LLM_NAME, api_key=api_key)
llm = AzureOpenAILLM(
openai_api_key=api_key,
openai_api_base=settings.OPENAI_API_BASE,
openai_api_version=settings.OPENAI_API_VERSION,
deployment_name=settings.AZURE_DEPLOYMENT_NAME,
)
else:
logger.debug("plain OpenAI")
llm = OpenAILLM(api_key=api_key)
docs = docsearch.search(question, k=2) docs = docsearch.search(question, k=2)
# join all page_content together with a newline # join all page_content together with a newline
@ -270,16 +262,8 @@ def api_answer():
# Note if you have used other embeddings than OpenAI, you need to change the embeddings # Note if you have used other embeddings than OpenAI, you need to change the embeddings
docsearch = FaissStore(vectorstore, embeddings_key) docsearch = FaissStore(vectorstore, embeddings_key)
if is_azure_configured():
llm = AzureOpenAILLM( llm = LLMCreator.create_llm(settings.LLM_NAME, api_key=api_key)
openai_api_key=api_key,
openai_api_base=settings.OPENAI_API_BASE,
openai_api_version=settings.OPENAI_API_VERSION,
deployment_name=settings.AZURE_DEPLOYMENT_NAME,
)
else:
logger.debug("plain OpenAI")
llm = OpenAILLM(api_key=api_key)

View File

@ -4,7 +4,7 @@ from pydantic import BaseSettings
class Settings(BaseSettings): class Settings(BaseSettings):
LLM_NAME: str = "openai_chat" LLM_NAME: str = "openai"
EMBEDDINGS_NAME: str = "openai_text-embedding-ada-002" EMBEDDINGS_NAME: str = "openai_text-embedding-ada-002"
CELERY_BROKER_URL: str = "redis://localhost:6379/0" CELERY_BROKER_URL: str = "redis://localhost:6379/0"
CELERY_RESULT_BACKEND: str = "redis://localhost:6379/1" CELERY_RESULT_BACKEND: str = "redis://localhost:6379/1"

View File

@ -0,0 +1,20 @@
from application.llm.openai import OpenAILLM, AzureOpenAILLM
from application.llm.sagemaker import SagemakerAPILLM
from application.llm.huggingface import HuggingFaceLLM
class LLMCreator:
llms = {
'openai': OpenAILLM,
'azure_openai': AzureOpenAILLM,
'sagemaker': SagemakerAPILLM,
'huggingface': HuggingFaceLLM
}
@classmethod
def create_llm(cls, type, *args, **kwargs):
llm_class = cls.llms.get(type.lower())
if not llm_class:
raise ValueError(f"No LLM class found for type {type}")
return llm_class(*args, **kwargs)

View File

@ -1,4 +1,5 @@
from application.llm.base import BaseLLM from application.llm.base import BaseLLM
from application.core.settings import settings
class OpenAILLM(BaseLLM): class OpenAILLM(BaseLLM):
@ -44,9 +45,9 @@ class AzureOpenAILLM(OpenAILLM):
def __init__(self, openai_api_key, openai_api_base, openai_api_version, deployment_name): def __init__(self, openai_api_key, openai_api_base, openai_api_version, deployment_name):
super().__init__(openai_api_key) super().__init__(openai_api_key)
self.api_base = openai_api_base self.api_base = settings.OPENAI_API_BASE,
self.api_version = openai_api_version self.api_version = settings.OPENAI_API_VERSION,
self.deployment_name = deployment_name self.deployment_name = settings.AZURE_DEPLOYMENT_NAME,
def _get_openai(self): def _get_openai(self):
openai = super()._get_openai() openai = super()._get_openai()

View File

@ -0,0 +1,27 @@
from application.llm.base import BaseLLM
from application.core.settings import settings
import requests
import json
class SagemakerAPILLM(BaseLLM):
def __init__(self, *args, **kwargs):
self.url = settings.SAGEMAKER_API_URL
def gen(self, model, engine, messages, stream=False, **kwargs):
context = messages[0]['content']
user_question = messages[-1]['content']
prompt = f"### Instruction \n {user_question} \n ### Context \n {context} \n ### Answer \n"
response = requests.post(
url=self.url,
headers={
"Content-Type": "application/json; charset=utf-8",
},
data=json.dumps({"input": prompt})
)
return response.json()['answer']
def gen_stream(self, model, engine, messages, stream=True, **kwargs):
raise NotImplementedError("Sagemaker does not support streaming")