Merge pull request #88 from mefengl/feat

feat: add support for directory list
This commit is contained in:
Pavel 2023-02-15 13:11:42 +04:00 committed by GitHub
commit 4bd83cfce9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 57 additions and 34 deletions

View File

@ -1,3 +1,5 @@
from collections import defaultdict
import os
import sys
import nltk
import dotenv
@ -18,13 +20,17 @@ app = typer.Typer(add_completion=False)
nltk.download('punkt', quiet=True)
nltk.download('averaged_perceptron_tagger', quiet=True)
#Splits all files in specified folder to documents
@app.command()
def ingest(directory: Optional[str] = typer.Option("inputs",
help="Path to the directory for index creation."),
files: Optional[List[str]] = typer.Option(None,
help="""File paths to use (Optional; overrides directory).
E.g. --files inputs/1.md --files inputs/2.md"""),
def ingest(yes: bool = typer.Option(False, "-y", "--yes", prompt=False,
help="Whether to skip price confirmation"),
dir: Optional[List[str]] = typer.Option(["inputs"],
help="""List of paths to directory for index creation.
E.g. --dir inputs --dir inputs2"""),
file: Optional[List[str]] = typer.Option(None,
help="""File paths to use (Optional; overrides dir).
E.g. --file inputs/1.md --file inputs/2.md"""),
recursive: Optional[bool] = typer.Option(True,
help="Whether to recursively search in subdirectories."),
limit: Optional[int] = typer.Option(None,
@ -38,27 +44,40 @@ def ingest(directory: Optional[str] = typer.Option("inputs",
Creates index from specified location or files.
By default /inputs folder is used, .rst and .md are parsed.
"""
raw_docs = SimpleDirectoryReader(input_dir=directory, input_files=files, recursive=recursive,
required_exts=formats, num_files_limit=limit,
exclude_hidden=exclude).load_data()
raw_docs = [Document.to_langchain_format(raw_doc) for raw_doc in raw_docs]
print(raw_docs)
# Here we split the documents, as needed, into smaller chunks.
# We do this due to the context limits of the LLMs.
text_splitter = RecursiveCharacterTextSplitter()
docs = text_splitter.split_documents(raw_docs)
# Here we check for command line arguments for bot calls.
# If no argument exists or the permission_bypass_flag argument is not '-y',
# user permission is requested to call the API.
if len(sys.argv) > 1:
permission_bypass_flag = sys.argv[1]
if permission_bypass_flag == '-y':
call_openai_api(docs)
def process_one_docs(directory, folder_name):
raw_docs = SimpleDirectoryReader(input_dir=directory, input_files=file, recursive=recursive,
required_exts=formats, num_files_limit=limit,
exclude_hidden=exclude).load_data()
raw_docs = [Document.to_langchain_format(raw_doc) for raw_doc in raw_docs]
print(raw_docs)
# Here we split the documents, as needed, into smaller chunks.
# We do this due to the context limits of the LLMs.
text_splitter = RecursiveCharacterTextSplitter()
docs = text_splitter.split_documents(raw_docs)
# Here we check for command line arguments for bot calls.
# If no argument exists or the yes is not True, then the
# user permission is requested to call the API.
if len(sys.argv) > 1:
if yes:
call_openai_api(docs, folder_name)
else:
get_user_permission(docs, folder_name)
else:
get_user_permission(docs)
else:
get_user_permission(docs)
get_user_permission(docs, folder_name)
folder_counts = defaultdict(int)
folder_names = []
for dir_path in dir:
folder_name = os.path.basename(os.path.normpath(dir_path))
folder_counts[folder_name] += 1
if folder_counts[folder_name] > 1:
folder_name = f"{folder_name}_{folder_counts[folder_name]}"
folder_names.append(folder_name)
for directory, folder_name in zip(dir, folder_names):
process_one_docs(directory, folder_name)
if __name__ == "__main__":
app()

View File

@ -1,3 +1,4 @@
import os
import faiss
import pickle
import tiktoken
@ -12,8 +13,13 @@ def num_tokens_from_string(string: str, encoding_name: str) -> int:
total_price = ((num_tokens/1000) * 0.0004)
return num_tokens, total_price
def call_openai_api(docs):
def call_openai_api(docs, folder_name):
# Function to create a vector store from the documents and save it to disk.
# create output folder if it doesn't exist
if not os.path.exists(f"outputs/{folder_name}"):
os.makedirs(f"outputs/{folder_name}")
from tqdm import tqdm
docs_test = [docs[0]]
# remove the first element from docs
@ -31,25 +37,23 @@ def call_openai_api(docs):
print("Error on ", i)
print("Saving progress")
print(f"stopped at {c1} out of {len(docs)}")
faiss.write_index(store.index, "docs.index")
faiss.write_index(store.index, f"outputs/{folder_name}/docs.index")
store_index_bak = store.index
store.index = None
with open("faiss_store.pkl", "wb") as f:
with open(f"outputs/{folder_name}/faiss_store.pkl", "wb") as f:
pickle.dump(store, f)
print("Sleeping for 60 seconds and trying again")
time.sleep(60)
faiss.write_index(store_index_bak, "docs.index")
store.index = store_index_bak
store.add_texts([i.page_content], metadatas=[i.metadata])
c1 += 1
faiss.write_index(store.index, "docs.index")
faiss.write_index(store.index, f"outputs/{folder_name}/docs.index")
store.index = None
with open("faiss_store.pkl", "wb") as f:
with open(f"outputs/{folder_name}/faiss_store.pkl", "wb") as f:
pickle.dump(store, f)
def get_user_permission(docs):
def get_user_permission(docs, folder_name):
# Function to ask user permission to call the OpenAI api and spend their OpenAI funds.
# Here we convert the docs list to a string and calculate the number of OpenAI tokens the string represents.
#docs_content = (" ".join(docs))
@ -65,8 +69,8 @@ def get_user_permission(docs):
#Here we check for user permission before calling the API.
user_input = input("Price Okay? (Y/N) \n").lower()
if user_input == "y":
call_openai_api(docs)
call_openai_api(docs, folder_name)
elif user_input == "":
call_openai_api(docs)
call_openai_api(docs, folder_name)
else:
print("The API was not called. No money was spent.")