DocsGPT/scripts/parser/py2doc.py

122 lines
4.7 KiB
Python
Raw Normal View History

import ast
import os
2023-02-22 17:19:13 +00:00
from pathlib import Path
import tiktoken
from langchain_community.llms import OpenAI
2023-02-22 17:19:13 +00:00
from langchain.prompts import PromptTemplate
2023-05-12 10:02:25 +00:00
def find_files(directory):
files_list = []
for root, dirs, files in os.walk(directory):
for file in files:
if file.endswith('.py'):
files_list.append(os.path.join(root, file))
return files_list
2023-05-12 10:02:25 +00:00
def extract_functions(file_path):
with open(file_path, 'r') as file:
source_code = file.read()
functions = {}
tree = ast.parse(source_code)
for node in ast.walk(tree):
if isinstance(node, ast.FunctionDef):
func_name = node.name
func_def = ast.get_source_segment(source_code, node)
functions[func_name] = func_def
2023-02-22 17:19:13 +00:00
return functions
2023-05-12 10:02:25 +00:00
def extract_classes(file_path):
with open(file_path, 'r') as file:
source_code = file.read()
classes = {}
tree = ast.parse(source_code)
for node in ast.walk(tree):
if isinstance(node, ast.ClassDef):
class_name = node.name
function_names = []
for subnode in ast.walk(node):
if isinstance(subnode, ast.FunctionDef):
function_names.append(subnode.name)
classes[class_name] = ", ".join(function_names)
2023-02-22 17:19:13 +00:00
return classes
2023-05-12 10:02:25 +00:00
def extract_functions_and_classes(directory):
files = find_files(directory)
functions_dict = {}
classes_dict = {}
for file in files:
functions = extract_functions(file)
if functions:
functions_dict[file] = functions
classes = extract_classes(file)
if classes:
classes_dict[file] = classes
return functions_dict, classes_dict
2023-05-12 10:02:25 +00:00
def parse_functions(functions_dict, formats, dir):
2023-02-22 17:19:13 +00:00
c1 = len(functions_dict)
for i, (source, functions) in enumerate(functions_dict.items(), start=1):
print(f"Processing file {i}/{c1}")
2023-05-12 10:02:25 +00:00
source_w = source.replace(dir + "/", "").replace("." + formats, ".md")
subfolders = "/".join(source_w.split("/")[:-1])
Path(f"outputs/{subfolders}").mkdir(parents=True, exist_ok=True)
for j, (name, function) in enumerate(functions.items(), start=1):
print(f"Processing function {j}/{len(functions)}")
2023-02-22 17:19:13 +00:00
prompt = PromptTemplate(
input_variables=["code"],
template="Code: \n{code}, \nDocumentation: ",
)
llm = OpenAI(temperature=0)
response = llm(prompt.format(code=function))
mode = "a" if Path(f"outputs/{source_w}").exists() else "w"
with open(f"outputs/{source_w}", mode) as f:
2023-05-12 10:02:25 +00:00
f.write(
f"\n\n# Function name: {name} \n\nFunction: \n```\n{function}\n```, \nDocumentation: \n{response}")
2023-02-22 17:19:13 +00:00
def parse_classes(classes_dict, formats, dir):
2023-02-22 17:19:13 +00:00
c1 = len(classes_dict)
for i, (source, classes) in enumerate(classes_dict.items()):
2023-05-12 10:02:25 +00:00
print(f"Processing file {i + 1}/{c1}")
source_w = source.replace(dir + "/", "").replace("." + formats, ".md")
subfolders = "/".join(source_w.split("/")[:-1])
Path(f"outputs/{subfolders}").mkdir(parents=True, exist_ok=True)
2023-02-22 17:19:13 +00:00
for name, function_names in classes.items():
2023-05-12 10:02:25 +00:00
print(f"Processing Class {i + 1}/{c1}")
2023-02-22 17:19:13 +00:00
prompt = PromptTemplate(
input_variables=["class_name", "functions_names"],
template="Class name: {class_name} \nFunctions: {functions_names}, \nDocumentation: ",
)
llm = OpenAI(temperature=0)
response = llm(prompt.format(class_name=name, functions_names=function_names))
with open(f"outputs/{source_w}", "a" if Path(f"outputs/{source_w}").exists() else "w") as f:
f.write(f"\n\n# Class name: {name} \n\nFunctions: \n{function_names}, \nDocumentation: \n{response}")
2023-02-22 17:19:13 +00:00
2023-05-12 10:02:25 +00:00
def transform_to_docs(functions_dict, classes_dict, formats, dir):
docs_content = ''.join([str(key) + str(value) for key, value in functions_dict.items()])
docs_content += ''.join([str(key) + str(value) for key, value in classes_dict.items()])
2023-02-22 17:19:13 +00:00
num_tokens = len(tiktoken.get_encoding("cl100k_base").encode(docs_content))
2023-02-22 17:19:13 +00:00
total_price = ((num_tokens / 1000) * 0.02)
print(f"Number of Tokens = {num_tokens:,d}")
print(f"Approx Cost = ${total_price:,.2f}")
user_input = input("Price Okay? (Y/N)\n").lower()
if user_input == "y" or user_input == "":
2023-02-22 17:19:13 +00:00
if not Path("outputs").exists():
Path("outputs").mkdir()
parse_functions(functions_dict, formats, dir)
parse_classes(classes_dict, formats, dir)
2023-02-22 17:19:13 +00:00
print("All done!")
else:
2023-05-12 10:02:25 +00:00
print("The API was not called. No money was spent.")