DocsGPT/application/llm/llama_cpp.py

40 lines
1.4 KiB
Python
Raw Normal View History

2023-09-30 19:38:48 +00:00
from application.llm.base import BaseLLM
2023-10-01 18:16:13 +00:00
from application.core.settings import settings
2023-09-30 19:38:48 +00:00
class LlamaCpp(BaseLLM):
2023-10-01 18:16:13 +00:00
def __init__(self, api_key, llm_name=settings.MODEL_PATH, **kwargs):
2023-09-30 19:38:48 +00:00
global llama
2023-10-01 16:20:47 +00:00
try:
from llama_cpp import Llama
except ImportError:
raise ImportError("Please install llama_cpp using pip install llama-cpp-python")
2023-09-30 19:38:48 +00:00
2023-10-01 18:16:13 +00:00
llama = Llama(model_path=llm_name, n_ctx=2048)
2023-09-30 19:38:48 +00:00
def gen(self, model, engine, messages, stream=False, **kwargs):
context = messages[0]['content']
user_question = messages[-1]['content']
prompt = f"### Instruction \n {user_question} \n ### Context \n {context} \n ### Answer \n"
result = llama(prompt, max_tokens=150, echo=False)
# import sys
# print(result['choices'][0]['text'].split('### Answer \n')[-1], file=sys.stderr)
return result['choices'][0]['text'].split('### Answer \n')[-1]
def gen_stream(self, model, engine, messages, stream=True, **kwargs):
context = messages[0]['content']
user_question = messages[-1]['content']
prompt = f"### Instruction \n {user_question} \n ### Context \n {context} \n ### Answer \n"
result = llama(prompt, max_tokens=150, echo=False, stream=stream)
# import sys
# print(list(result), file=sys.stderr)
for item in result:
for choice in item['choices']:
yield choice['text']