mirror of
https://github.com/arc53/DocsGPT
synced 2024-11-09 19:10:53 +00:00
32 lines
1.1 KiB
Python
32 lines
1.1 KiB
Python
|
from application.llm.base import BaseLLM
|
||
|
|
||
|
class HuggingFaceLLM(BaseLLM):
|
||
|
|
||
|
def __init__(self, api_key, llm_name='Arc53/DocsGPT-7B'):
|
||
|
global hf
|
||
|
|
||
|
from langchain.llms import HuggingFacePipeline
|
||
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
||
|
tokenizer = AutoTokenizer.from_pretrained(llm_name)
|
||
|
model = AutoModelForCausalLM.from_pretrained(llm_name)
|
||
|
pipe = pipeline(
|
||
|
"text-generation", model=model,
|
||
|
tokenizer=tokenizer, max_new_tokens=2000,
|
||
|
device_map="auto", eos_token_id=tokenizer.eos_token_id
|
||
|
)
|
||
|
hf = HuggingFacePipeline(pipeline=pipe)
|
||
|
|
||
|
def gen(self, model, engine, messages, stream=False, **kwargs):
|
||
|
context = messages[0]['content']
|
||
|
user_question = messages[-1]['content']
|
||
|
prompt = f"### Instruction \n {user_question} \n ### Context \n {context} \n ### Answer \n"
|
||
|
|
||
|
result = hf(prompt)
|
||
|
|
||
|
return result.content
|
||
|
|
||
|
def gen_stream(self, model, engine, messages, stream=True, **kwargs):
|
||
|
|
||
|
raise NotImplementedError("HuggingFaceLLM Streaming is not implemented yet.")
|
||
|
|