2023-02-10 15:44:42 +00:00
|
|
|
import sys
|
|
|
|
import nltk
|
|
|
|
import dotenv
|
|
|
|
|
|
|
|
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
|
|
|
|
|
from parser.file.bulk import SimpleDirectoryReader
|
|
|
|
from parser.schema.base import Document
|
|
|
|
from parser.open_ai_func import call_openai_api, get_user_permission
|
|
|
|
|
|
|
|
dotenv.load_dotenv()
|
|
|
|
|
|
|
|
#Specify your folder HERE
|
2023-02-10 17:30:37 +00:00
|
|
|
directory_to_ingest = 'inputs'
|
2023-02-10 15:44:42 +00:00
|
|
|
|
|
|
|
nltk.download('punkt')
|
|
|
|
nltk.download('averaged_perceptron_tagger')
|
|
|
|
|
|
|
|
#Splits all files in specified folder to documents
|
|
|
|
raw_docs = SimpleDirectoryReader(input_dir=directory_to_ingest).load_data()
|
|
|
|
raw_docs = [Document.to_langchain_format(raw_doc) for raw_doc in raw_docs]
|
|
|
|
# Here we split the documents, as needed, into smaller chunks.
|
|
|
|
# We do this due to the context limits of the LLMs.
|
|
|
|
text_splitter = RecursiveCharacterTextSplitter()
|
|
|
|
docs = text_splitter.split_documents(raw_docs)
|
|
|
|
|
|
|
|
# Here we check for command line arguments for bot calls.
|
|
|
|
# If no argument exists or the permission_bypass_flag argument is not '-y',
|
|
|
|
# user permission is requested to call the API.
|
|
|
|
if len(sys.argv) > 1:
|
|
|
|
permission_bypass_flag = sys.argv[1]
|
|
|
|
if permission_bypass_flag == '-y':
|
|
|
|
call_openai_api(docs)
|
|
|
|
else:
|
|
|
|
get_user_permission(docs)
|
|
|
|
else:
|
|
|
|
get_user_permission(docs)
|