DocsGPT/application/worker.py

58 lines
2.3 KiB
Python
Raw Normal View History

2023-03-13 14:20:03 +00:00
import requests
import nltk
import os
from langchain.text_splitter import RecursiveCharacterTextSplitter
from parser.file.bulk import SimpleDirectoryReader
from parser.schema.base import Document
from parser.open_ai_func import call_openai_api
from celery import current_task
nltk.download('punkt', quiet=True)
nltk.download('averaged_perceptron_tagger', quiet=True)
def ingest_worker(self, directory, formats, name_job, filename, user):
# directory = 'inputs'
# formats = [".rst", ".md"]
input_files = None
recursive = True
limit = None
exclude = True
# name_job = 'job1'
# filename = 'install.rst'
# user = 'local'
url = 'http://localhost:5001/api/download'
file_data = {'name': name_job, 'file': filename, 'user': user}
response = requests.get(url, params=file_data)
file = response.content
# save in folder inputs
# create folder if not exists
if not os.path.exists(directory):
os.makedirs(directory)
with open(directory + '/' + filename, 'wb') as f:
f.write(file)
import time
self.update_state(state='PROGRESS', meta={'current': 1})
raw_docs = SimpleDirectoryReader(input_dir=directory, input_files=input_files, recursive=recursive,
required_exts=formats, num_files_limit=limit,
exclude_hidden=exclude).load_data()
raw_docs = [Document.to_langchain_format(raw_doc) for raw_doc in raw_docs]
# Here we split the documents, as needed, into smaller chunks.
# We do this due to the context limits of the LLMs.
text_splitter = RecursiveCharacterTextSplitter()
docs = text_splitter.split_documents(raw_docs)
call_openai_api(docs, directory, self)
self.update_state(state='PROGRESS', meta={'current': 100})
# get files from outputs/inputs/index.faiss and outputs/inputs/index.pkl
# and send them to the server (provide user and name in form)
url = 'http://localhost:5001/api/upload_index'
file_data = {'name': name_job, 'user': user}
files = {'file_faiss': open(directory + '/index.faiss', 'rb'),
'file_pkl': open(directory + '/index.pkl', 'rb')}
response = requests.post(url, files=files, data=file_data)
print(response.text)
return {'directory': directory, 'formats': formats, 'name_job': name_job, 'filename': filename, 'user': user}